
Z for call-by-value

Koji Nakazawa1, Ken-etsu Fujita2, and Yuta Imagawa1

1 Graduate School of Informatics, Nagoya University, Nagoya, JAPAN
knak@i.nagoya-u.ac.jp, imagawa.yuuta@d.mbox.nagoya-u.ac.jp

2 Graduate School of Science and Technology, Gunma University, Gunma, JAPAN
fujita@cs.gunma-u.ac.jp

Abstract

This work gives a new proof of the confluence of Carraro and Guerrieri’s call-by-value
lambda calculus λσ

v with permutation rules by the extended Z theorem, the compositional
Z theorem.

1 Introduction

In general, it is hard to prove the confluence of higher-order rewriting, including (extensions
of) the lambda calculus. There is a long history to give simple (or elegant) proofs for the
confluence of higher-order rewriting systems and the lambda calculi: Church and Rosser’s
proof with the notion of the residuals of redexes, Tait and Martin-Löf’s proofs with the parallel
reduction, and Takahashi’s proof with the complete development. Dehornoy and van Oostrom’s
Z theorem in [5] is one of the newest techniques which is widely applicable to confluence proofs
in general setting. The Z theorem says that confluence of abstract rewriting system follows
from existence of a mapping satisfying the Z property: any one-step reduction a → b implies
b →∗ f(a) →∗ f(b). This theorem has been applied to some variants of the lambda calculus in
[5, 6, 2, 8].

The Z theorem is further generalized by Nakazawa and Fujita as the compositional Z theorem
in [7], which enables us to use the Z theorem with dividing rewriting systems into two or more
subsystems. The compositional Z gives a simple proof of confluence of the lambda calculus with
permutation rules for direct sums. Ando’s original confluence proof in [3] for that system is
much complicated, and we cannot näıvely apply the original Z theorem because it seems hard to
directly define a mapping satisfying the Z property for both beta and permutation reductions.

Carraro and Guerrieri’s lambda calculus λσ
v in [4] is a call-by-value variant of the lambda

calculus, in which they adopt permutation rules to avoid that reductions unexpectedly get
stuck. In [1], this calculus is also called the shuffling calculus λshuf , and further discussed as one
of call-by-value variants of the lambda calculus for open terms. As for the permutation rules
for direct sums, the permutation rules of λσ

v make the confluence proof much harder, and we
cannot straightforwardly adapt the ordinary proof techniques with the parallel reduction or the
complete development. Carraro and Guerrieri proved the confluence of λσ

v by the commutativity
of the βv reduction and the permutation rules.

In this work, we show that the compositional Z theorem can be applied to λσ
v . As in [7], we

cannot näıvely adapted the original Z theorem for λσ
v , and the problem can be avoided by the

compositional Z. Although the outline of our proof follows [7], the main difference is that the
mapping we consider here may leave redexes of permutation reductions, because the calculus
has two kinds (directions) of permutation rules. Hence, we cannot apply the simplified variant
of the compositional Z (Corollary 2.4 in [7]).

Z for CBV Nakazawa, Fujita, and Imagawa

2 λσ
v

In this section, the call-by-value lambda calculus λσ
v is introduced.

The values and terms of λσ
v are given as follows.

V ::= x | λx.M (values)

M ::= V | MM (terms)

The reduction rules of λσ
v are given as follows.

(λx.M)V →βv [V/x]M

(λx.M)NL →σ1 (λx.ML)N (x ∈ FV (L))

V ((λx.M)N) →σ3 (λx.V M)N (x ∈ FV (V))

Here, V denotes values, M , N , and L denote terms, and [V/x]M is the usual capture-avoiding
substitution. FV (M) denotes the set of free variables in M . We consider the compatible closure
of the reduction rules.

This calculus is introduced for operational characterization of solvability in call-by-value
lambda calculi in particular for open terms. In Plotkin’s original call-by-value lambda calcu-
lus λv in [9], the term M ≡ (λyx.xx)(zz)(λx.xx) is stuck since zz is not a value, whereas
semantically it is equivalent to (λx.xx)(λx.xx) and hence unsolvable. In λσ

v , M is reduced to
(λy.(λx.xx)(λx.xx))(zz) by the σ-rules, and we can discover the redex (λx.xx)(λx.xx).

3 Compositional Z

We summarize Dehornoy and van Oostrom’s Z theorem [5], and then extend it for compositional
functions, called the compositional Z [7]. It gives a sufficient condition for that a compositional
function satisfies the Z property, and enables us to consider a reduction system by dividing into
two parts to prove confluence.

Definition 3.1 ((Weak) Z property). Let (A, →) be an abstract rewriting system, and →∗

be the reflexive transitive closure of → . Let →x be another relation on A, and →∗
x be its

reflexive transitive closure.
1. A mapping f satisfies the weak Z property for → by →x if a→ b implies b→∗

x f(a)→∗
x f(b)

for any a, b ∈ A.
2. A mapping f satisfies the Z property for → if it satisfies the weak Z property by →

itself.
When f satisfies the (weak) Z property, we also say that f is (weakly) Z.

It becomes clear why we call it the Z property when we draw the condition as the following
diagram.

a !! b

∗

""

f(a)
∗
!! f(b)

Theorem 3.2 (Z theorem [5]). If there exists a mapping satisfying the Z property for an abstract
rewriting system, then it is confluent.

2

Z for CBV Nakazawa, Fujita, and Imagawa

a
1

!! b

1
∗

""

a
2

!! b

∗

##

f1(a)

∗ $$

1

∗
!! f1(b)

f2(f1(a))
∗
!! f2(f1(b)) f2(f1(a))

∗
!! f2(f1(b))

Figure 1: Proof of Theorem 3.3

In fact, we can often prove that the usual complete developments have the Z property.
The compositional Z is the following, which is easily proved from Theorem 3.2 with the

diagrams in Figure 1.

Theorem 3.3 (Compositional Z [7]). Let (A, →) be an abstract rewriting system, and → be
→1 ∪ →2 . If there exist mappings f1, f2 : A → A such that

(a) f1 is Z for →1

(b) a→1 b implies f2(a)→∗ f2(b)
(c) a→∗ f2(a) holds for any a ∈ Im(f1)
(d) f2 ◦ f1 is weakly Z for →2 by → ,

then f2 ◦ f1 is Z for (A, →), and hence (A, →) is confluent.

One of the simplest applications of the compositional Z is for the βη-reduction on the
untyped lambda calculus (although it can be directly proved by the Z theorem as in [6]). In
[7], the compositional Z is used for the lambda calculus with permutation rules for direct sums
such as

(case M with inl x1 ⇒ N1 | inr x2 ⇒ N2)L → case M with inl x1 → N1L | inr x2 → N2L,

which is denoted as (M [x1.N1, x2, N2])L → M [x1.N1L, x2, N2L] in [7]. Such permu-
tation rules make confluence proofs much harder because of the critical pair: M ≡
P [x1.N1, x2.N2][y1.L1, y2.L2]K is reduced to both

M1 ≡ P [x1.N1[y1.L1, y2.L2], x2.N2[y1.L1, y2.L2]]K

M2 ≡ P [x1.N1, x2.N2][y1.L1K, y2.L2K].

These can be reduced to a common termM3 ≡ P [x1.N1[y1.L1K, y2.L2K], x2.N2[y1.L1K, y2.L2K]],
but in M1 →∗ M3 we have to reduce the redex which does not occur in M1. Due to this fact,
we can apply neither the ordinary parallel-reduction technique nor the original Z theorem.

4 Confluence of λσ
v by compositional Z

In this section, we see that λσ
v contains similar critical pairs to those in the lambda calculus

with direct sums, and that the compositional Z solves the problem.
Let’s consider the term M ≡ (λx.N)((λy.K)L)P , which is reduced to both

M1 ≡ (λx.NP)((λy.K)L) (by σ1)

M2 ≡ (λy.(λx.N)K)LP (by σ3).

3

Z for CBV Nakazawa, Fujita, and Imagawa

These terms are reduced to a common term M3 ≡ (λy.(λx.NP)K)L. M1 → M3 is one-step σ3

whereas M2 →∗ M3 consists of two σ1 steps:

M2 ≡ (λy.(λx.N)K)LP →σ1
(λy.(λx.N)KP)L →σ1

(λy.(λx.NP)K)L,

where the σ1-redex of the second step does not occur in M2. This means that we cannot näıvely
extend the ordinary parallel reduction, by which M2 is not reduced to M3 in one step, and that,
in the mapping satisfying the Z property, we have to reduce successive σ-reductions at once. For
example, the above example shows that M must be mapped to M3 or its reduct. We consider
the auxiliary mapping M@N to reduce successive σ-reductions such as

(λy.(λx.N)K)L@P ≡ (λy.(λx.N@P)K)L.

Here, the major difference from [7] is that there are two kinds of permutation rules σ1 and σ3

with opposite direction. We consider the following two auxiliary mappings @1 and @3:

(λx.M)N@1P ≡ (λx.M@1P)N V@3(λx.M)N ≡ (λx.V@3M)N

M@1P ≡ MP (otherwise) V@3M ≡ VM (otherwise)

As for [7], the following näıve mapping does not satisfy the Z property.

x∗ ≡ x

(λx.M)∗ ≡ λx.M∗

((λx.M)V)∗ ≡ [V ∗/x]M∗

(MN)∗ ≡ M∗@1N
∗ (M not a value)

(V N)∗ ≡ V ∗@3N
∗ (otherwise)

For P ≡ (λx.xy)(λz.z)v and Q ≡ (λx.xyv)(λz.z), we have P →σ1 Q, but we also have P ∗ ≡
(λz.z)y@1v ≡ (λz.zv)y and Q∗ ≡ (λz.z)yv, and hence P ∗ ̸→∗ Q∗.

In order to apply the compositional Z theorem, we divide the reductions of λσ
v into βv and

σ, and define the mapping (·)S and (·)B as follows.

xS ≡ x xB ≡ x

(λx.M)S ≡ λx.MS (λx.M)B ≡ λx.MB

(MN)S ≡ MS@1N
S (M not a value) ((λx.M)V)B ≡ [V B/x]MB

(V N)S ≡ V S@3N
S (MN)B ≡ MBNB (otherwise)

Theorem 4.1. The two mappings (·)S and (·)B (for σ- and βv-reductions, respectively) satisfy
the conditions for the compositional Z, and hence λσ

v is confluent.

The outline of the proof almost follows [7]. However, in contrast to [7], the mapping (·)S
does not necessarily collapse σ-steps, that is, there are terms M and N such that M →σ N
and MS →+ NS. For example, we have

M ≡ (λx.x)(yz)((λv.v)w) →σ1 (λx.x((λv.v)w))(yz) ≡ N,

and

MS ≡ ((λx.x)(yz))S@1((λv.v)w)
S ≡ (λx.x((λv.v)w))(yz)

NS ≡ (λx.x((λv.v)w))S@3(yz)
S ≡ (λx.x@3((λv.v)w))(yz) ≡ (λx.(λv.xv)w)(yz).

The σ3-redex x((λv.v)w) in MS is created in the application of (·)S, and it is not reduced in
MS. Hence, we cannot apply the simplified variant of the compositional Z (Corollary 2.4 in [7])
for these mappings.

4

Z for CBV Nakazawa, Fujita, and Imagawa

References

[1] Accattoli, B. and Guerrieri, G. Open call-by-value. In Asian Symposium on Programming Languages
and Systems (APLAS 2016), volume 10017 of Lecture Notes in Computer Science, pages 206–226,
2016.

[2] Accattoli, B. and Kesner, D. The permutative λ-calculus. In Proceedings of the International
Conference on Logic Programming and Automated Reasoning (LPAR 2012), volume 7180 of Lecture
Notes in Computer Science, pages 15–22, 2012.

[3] Ando, Y. Church-Rosser property of a simple reduction for full first-order classical natural deduc-
tion. Annals of Pure and Applied Logic, 119:225–237, 2003.

[4] Carraro, A. and Guerrieri, G. A semantical and operational account of call-by-value solvability.
In Foundations of Software Science and Computation Structures (FoSSaCS 2014), volume 8412 of
Lecture Notes in Computer Science, pages 103–18. Springer, 2014.

[5] Dehornoy, P. and van Oostrom, V. Z, proving confluence by monotonic single-step upperbound
functions. In Logical Models of Reasoning and Computation (LMRC-08), 2008.

[6] Komori, Y., Matsuda, N., and Yamakawa, F. A simplified proof of the church-rosser theorem.
Studia Logica, 102(1):175–183, 2013.

[7] Nakazawa, K. and Fujita, K. Compositional Z: Confluence proofs for permutative conversion. Studia
Logica, 104:1205–1224, 2016.

[8] Nakazawa, K. and Nagai, T. Reduction system for extensional lambda-mu calculus. In 25th In-
ternational Conference on Rewriting Techniques and Applications joint with the 12th International
Conference on Typed Lambda Calculi and Applications (RTA-TLCA 2014), volume 8560 of Lecture
Notes in Computer Science, pages 349–363, 2014.

[9] Plotkin, G. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science, 1:125–
159, 1975.

5

