Church－Rosser Theorem and Compositional Z－Property

Ken－etsu Fujita and Koji Nakazawa

Abstract

The Church－Rosser theorem is one of the most fundamental properties on rewriting systems．In order to prove the theorem for beta－equality，Church and Rosser extracted the key property called confluence or so－called Strip lemma．Then the theorem can be proved by induction on the number of peaks from the key property．Here，the key property can be verified by using well－known notions such as parallel reduc－ tion and residuals．Although confluence and the Church－Rosser property are equivalent to each other，the property of confluence is a special case of the theorem．First，we investigate directly the theorem from the viewpoint of Takahashi translation，which provides a new and constructive proof of the theorem．The proof method has recently been established by the first author．Next，we show that the method is available as well under a general framework of the compositional Z（Nakazawa－Fujita）that makes it possible to apply a divide－and－conquer method for proving the Church－Rosser property．

1 Introduction

The Church－Rosser theorem［3］is one of the most fundamental properties on rewriting systems， which guarantees uniqueness of computation and consistency of a formal system．For instance，for proof trees and formulae of logic the unique nor－ mal forms of the corresponding terms and types in a Pure Type System（PTS）can be chosen as their de－ notations［24］via the Curry－Howard isomorphism．
The Church－Rosser theorem for β－equality states that if $M={ }_{\beta} N$ then there exists P such that $M \rightarrow P$ and $N \rightarrow P$ ．Here，we write $M={ }_{\beta} N$ iff M is obtained from N by a finite series of reductions (\rightarrow) and reversed reductions（ \leftarrow ）．As the Church－ Rosser theorem for β－reduction（confluence）has been well studied，to the best of our knowledge the

[^0]Church－Rosser theorem for β－equality is always sec－ ondary proved as a corollary from the theorem for β－reduction［3］［4］［2］［9］．

In order to prove the theorem，Church and Rosser extracted the key property of confluence．The prop－ erty states that if $M \rightarrow N_{1}$ and $M \rightarrow N_{2}$ then we have $N_{1} \rightarrow P$ and $N_{2} \rightarrow P$ for some P ．Two proof techniques of the property are well known；trac－ ing the residuals of redexes along a sequence of re－ ductions［3］［2］［9］，and working with parallel reduc－ tion［4］［2］［9］［22］known as the method of Tait and Martin－Löf．Moreover，a simpler proof of the theo－ rem is established only with Takahashi＇s translation ［22］（the Gross－Knuth reduction strategy［2］），but with no use of parallel reduction［14］［5］．

One of our motivation is to analyze quantitative properties in general of reduction systems．For in－ stance，measures for developments are investigated by Hindley［8］and de Vrijer［21］．Statman［19］ proved that deciding the $\beta \eta$－equality of typable λ－ terms is not elementary recursive．Schwichtenberg ［17］analysed the complexity of normalization in
the simply typed lambda－calculus，and showed that the number of reduction steps necessary to reach the normal form is bounded by a function at the fourth level of the Grzegorczyk hierarchy $\varepsilon^{4} \quad[7]$ ， i．e．，a non－elementary recursive function．Ketema and Simonsen［11］extensively studied valley sizes of confluence and the Church－Rosser property in term rewriting and λ－calculus as a function of given term sizes and reduction lengths．However，there are no known bounds for the Church－Rosser theorem for β－equality up to our knowledge．

In this study，we are also interested in quantita－ tive analysis of the witness of the Church－Rosser theorem：how to find common contractums with the least size and with the least number of reduc－ tion steps．For the theorem for β－equality $(M=\beta$ N implies $M \rightarrow{ }^{l_{3}} P$ and $N \rightarrow{ }^{l_{4}} P$ for some P ），we study functions that set bounds on the least size of a common contractum P ，and the least number of reduction steps l_{3} and l_{4} required to arrive at a common contractum，involving the term sizes of M and N ，and the length of $=\beta$ ．For the theo－ rem for β－reduction $\left(M \rightarrow \rightarrow^{l_{1}} N_{1}\right.$ and $M \rightarrow^{l_{2}} N_{2}$ implies $N_{1} \rightarrow{ }^{l_{3}} P$ and $N_{2} \rightarrow{ }^{l_{4}} P$ for some P ），we study functions that set bounds on the least size of a common contractum P ，and the least number of reduction steps l_{3} and l_{4} required to arrive at a common contractum，involving the term size of M and the lengths of l_{1} and l_{2} ．

In this paper，first we investigate directly the Church－Rosser theorem for β－equality construc－ tively from the viewpoint of Takahashi translation ［22］．Although the two statements are equivalent to each other，the theorem for β－reduction is a special case of that for β－equality．Our investigation shows that a common contractum of M and N such that $M={ }_{\beta} N$ is determined by（i）M and the number of occurrences of reduction (\rightarrow) appeared in $={ }_{\beta}$ ， and also by（ii）N and that of reversed reduction (\leftarrow) ．The main lemma plays a key role and reveals
a new invariant involved in the equality $={ }_{\beta}$ ，inde－ pendently of an exponential combination of reduc－ tion and reversed reduction．In terms of iteration of Takahashi translation，this characterization of the Church－Rosser theorem makes it possible to anal－ yse how large common contractums are and how many reduction－steps are required to obtain them． From this，we obtain an upper bound function for the theorem in the fourth level of the Grzegorczyk hierarchy．

Next，we demonstrate that the proof method is available as well under a general framework of the compositional Z［15］．The compositional Z－ property is an extension of the so－called Z－property ［5］，which makes it possible to apply a divide－and－ conquer method for proving confluence．For this extension，the measure functions constructed for quantitative analysis of the Church－Rosser theorem are abstracted as fundamental modules of bound functions．The paper makes a contribution to quan－ titative analysis of abstract rewriting systems un－ der the framework of the compositional Z ．

This paper is organized as follows．Section 1 is devoted to background，related work，and our con－ tribution of this paper．Section 2 gives prelimi－ naries including basic definitions and notions．Fol－ lowing［6］，Section 3 provides the new proof of the Church－Rosser theorem for β－equality．Based on this，from the viewpoint of abstract rewriting sys－ tems，reduction length for the theorem is analyzed in Section 4．Section 5 recalls the compositional Z－ property［15］．Section 6 demonstrates quantitative analysis of reduction systems under the framework of the compositional Z ，and this part is a new result of the paper．Section 7 concludes with remarks，re－ lated work，and further work．

The paper is an extended abstract，and see［6］for the details of the new proof of the Church－Rosser theorem and quantitative analysis of the witness， and see also［15］for the details of the compositional

Z－property and its application．

2 Preliminaries

The set of λ－terms denoted by Λ is defined with a countable set of variables as follows．

Definition 2.1 （ λ－terms）．

$$
M, N, P, Q \in \Lambda::=x|(\lambda x . M)|(M N)
$$

We write $M \equiv N$ for the syntactical identity un－ der renaming of bound variables．We suppose that every bound variable is distinct from free variables． The set of free variables in M is denoted by $\mathrm{FV}(M)$ ．

If M is a subterm of N then we write $M \sqsubseteq N$ for this．
Definition 2.2 （ β－reduction）．One step β－ reduction \rightarrow is defined as follows，where $M[x:=N]$ denotes a result of substituting N for every free oc－ currence of x in M ．

1．$(\lambda x . M) N \rightarrow M[x:=N]$
2．If $M \rightarrow N$ then $P M \rightarrow P N, M P \rightarrow M P$ ， and $\lambda x . M \rightarrow \lambda x . N$ ．
A term in the form of $(\lambda x \cdot P) Q \sqsubseteq M$ is called a redex of M ．A redex is denoted by R or S ，and we write $R: M \rightarrow N$ if N is obtained from M by contracting the redex $R \sqsubseteq M$ ．We write \rightarrow for the reflexive and transitive closure of \rightarrow ．If $R_{1}: M_{0} \rightarrow M_{1}, \ldots, R_{n}: M_{n-1} \rightarrow M_{n}(n \geq 0)$ ， then for this we write $R_{0} \ldots R_{n}: M_{0} \rightarrow^{n} M_{n}$ ， and the reduction sequence is denoted by the list $\left[M_{0}, M_{1}, \ldots, M_{n}\right]$ ．For operating on a list，we sup－ pose fundamental list functions，append，reverse， tail（cdr），map and max．
Definition 2.3 （ β－equality）．A term M is β－equal to N with reduction sequence $l s$ ，denoted by $M={ }_{\beta}$ N with $l s$ is defined as follows：
1．If $M \rightarrow N$ with reduction sequence $l s$ ，then $M={ }_{\beta} N$ with $l s$.

2．If $M={ }_{\beta} N$ with $l s$ ，then $N={ }_{\beta} M$ with reverse（ $l s$ ）．
3．If $M={ }_{\beta} P$ with $l s_{1}$ and $P={ }_{\beta} N$ with $l s_{2}$ ， then $M={ }_{\beta} N$ with $\operatorname{append}\left(l s_{1}, \operatorname{tail}\left(l s_{2}\right)\right)$ ．

Note that $M={ }_{\beta} N$ with reduction sequence $l s$ iff there exist terms $M_{0}, \ldots, M_{n}(n \geq 0)$ in this order such that $l s=\left[M_{0}, \ldots, M_{n}\right], M_{0} \equiv M, M_{n} \equiv N$ ， and either $M_{i} \rightarrow M_{i+1}$ or $M_{i+1} \rightarrow M_{i}$ for each $0 \leq i \leq n-1$ ．In this case，we say that the length of $={ }_{\beta}$ is n ，denoted by $={ }_{\beta}^{n}$ ．The arrow in $M_{i} \rightarrow M_{i+1}$ is called a right arrow，and the arrow in $M_{i+1} \rightarrow M_{i}$ is called a left arrow，denoted also by $M_{i} \leftarrow M_{i+1}$ ．

Definition 2.4 （Term size）．Define a function $|\mid: \Lambda \rightarrow \mathbf{N}$ as follows．

1．$|x|=1$
2．$|\lambda x . M|=1+|M|$
3．$|M N|=1+|M|+|N|$
Definition 2.5 （Takahashi＇s＊and iteration）．The notion of Takahashi translation M^{*}［22］，that is， the Gross－Knuth reduction strategy［2］is defined as follows．

1．$x^{*}=x$
2．$((\lambda x . M) N)^{*}=M^{*}\left[x:=N^{*}\right]$
3．$(M N)^{*}=M^{*} N^{*}$
4．$(\lambda x \cdot M)^{*}=\lambda x \cdot M^{*}$
The 3rd case above is available provided that M is not in the form of λ－abstraction．We write an iteration of the translation［23］as follows．

1．$M^{0 *}=M$
2．$M^{n *}=\left(M^{(n-1) *}\right)^{*}$
We write $\sharp(x \in M)$ for the free occurrence num－ ber of the variable x in M ．
Lemma 2．6．$|M[x:=N]|=|M|+\sharp(x \in M) \times$ $(|N|-1)$ ．

Proof．By straightforward induction on M ．
Definition $2.7(\operatorname{Redex}(M))$ ．A set of all redex oc－ currences in a term M is denoted by $\operatorname{Redex}(M)$ ． The cardinality of the set $\operatorname{Redex}(M)$ is denoted by $\sharp R \operatorname{edex}(M)$ ．
Lemma 2.8 （ $\sharp \operatorname{Redex}(M))$ ．We have $\sharp \operatorname{Redex}(M) \leq$ $\frac{1}{2}|M|-1$ for $|M| \geq 4$ ．

Proof．Note that $\sharp \operatorname{Redex}(M)=0$ for $|M|<4$ ．By
straightforward induction on M for $|M| \geq 4$ ．
Lemma 2.9 （Substitution）．If $M_{1} \rightarrow{ }^{l_{1}} N_{1}$ and $M_{2} \rightarrow^{l_{2}} N_{2}$ ，then $M_{1}\left[x:=M_{2}\right] \rightarrow^{l} N_{1}\left[x:=N_{2}\right]$ where $l=l_{1}+\sharp\left(x \in M_{1}\right) \times l_{2}$ ．

Proof．By induction on the derivation of $M_{1} \rightarrow{ }^{l_{1}}$ N_{1} ．The case of $l_{1}=0$ requires induction on $M_{1} \equiv N_{1}$ ．

Proposition 2.10 （Term size after n－step reduc－ tion）．If $M \rightarrow^{n} N(n \geq 1)$ then

$$
|N|<8\left(\frac{|M|}{8}\right)^{2^{n}}
$$

Proof．By induction on n ．
Lemma 2.11 （Size of M^{*} ）．We have $\left|M^{*}\right| \leq 2^{|M|-1}$ ．
Proof．By straightforward induction on M ．

3 New proof of the Church－Rosser the－ orem for β－equality

Proposition 3.1 （Complete development）．We have $M \rightarrow{ }^{l} M^{*}$ where $l \leq \frac{1}{2}|M|-1$ for $|M| \geq 4$ ．

Proof．By induction on the structure of M ．Oth－ erwise by the minimal complete development［9］ with respect to $\operatorname{Redex}(M)$ ，where $l \leq \sharp \operatorname{Redex}(M) \leq$ $\frac{1}{2}|M|-1$ from Lemma 2．8．

Definition 3.2 （Iteration of exponentials $\mathbf{2}_{n}^{m}$ ， $\mathrm{F}(m, n))$ ．Let m and n be natural numbers．
1．（1） $\mathbf{2}_{0}^{m}=m$ ；
（2） $\mathbf{2}_{n+1}^{m}=2^{\mathbf{2}_{n}^{m}}$ ．
2．（1） $\mathrm{F}(m, 0)=m ;(2) \mathrm{F}(m, n+1)=2^{\mathrm{F}(m, n)-1}$ ．

Proposition 3.3 （Length to $M^{n *}$ ）．If $M \rightarrow$ $M^{*} \rightarrow \cdots \rightarrow M^{n *}$ ，then the reduction length l with $M \rightarrow^{l} M^{n *}$ is bounded by $\operatorname{Len}(|M|, n)$ ，such that $\operatorname{Len}(|M|, n)=\left\{\begin{array}{rr}0, & \text { for } n=0 \\ \frac{1}{2} \sum_{k=0}^{n-1} \mathrm{~F}(|M|, k)-n, & \text { for } n \geq 1\end{array}\right.$ and then we have $\operatorname{Len}(|M|, n)<\mathbf{2}_{n-1}^{|M|}$ for $n \geq 1$ ．

Proof．From Lemma 2．11，we have $\left|M^{*}\right| \leq 2^{|M|-1}$ ，
and hence $\left|M^{k *}\right| \leq \mathbf{F}(|M|, k)<\mathbf{2}_{k}^{|M|}$ for $k \geq 1$ ．Let $M \rightarrow \rightarrow^{l_{1}} M^{*} \rightarrow^{l_{2}} \cdots \rightarrow^{l_{n}} M^{n *}$ ．Then from Proposi－ tion 3．1，each l_{k} is bounded by $\mathrm{F}(|M|, k-1)$ ：

$$
l_{k} \leq \frac{1}{2}\left|M^{(k-1) *}\right|-1 \leq \frac{1}{2} \mathrm{~F}(|M|, k-1)-1
$$

Therefore，l is bounded by $\operatorname{Len}(|M|, n)$ that is smaller than $\mathbf{2}_{n-1}^{|M|}$ for $n \geq 1$ ．

$$
\begin{aligned}
l & \leq \sum_{k=1}^{n} l_{k} \\
& \leq \frac{1}{2} \sum_{k=0}^{n-1} \mathrm{~F}(|M|, k)-n \\
& =\operatorname{Len}(|M|, n) \\
& <\frac{1}{2} \sum_{k=0}^{n-1} \mathbf{2}_{k}^{|M|}-n \\
& <\mathbf{2}_{n-1}^{|M|}-n
\end{aligned}
$$

Lemma 3.4 （Cofinal property）．If $M \rightarrow N$ then $N \rightarrow{ }^{l} M^{*}$ where $l \leq \frac{1}{2}|N|-1$ for $|N| \geq 4$ ．

Proof．By induction on the derivation of $M \rightarrow$ N ．

Lemma 3．5．$M^{*}\left[x:=N^{*}\right] \rightarrow^{l}(M[x:=N])^{*}$ with $l \leq\left|M^{*}\right|-1$ ．

Proof．By induction on the structure of M ．
Proposition 3.6 （Monotonicity）．
1．If $M \rightarrow N$ then $M^{*} \rightarrow^{l} N^{*}$ with $l \leq\left|M^{*}\right|-1$ ．
2．If $M \rightarrow^{m} N$ ，then $M^{*} \rightarrow^{l} N^{*}$ where $l \leq$ $2^{|M|^{2^{(m-1)}}}-m$ ．

Proof．1．By induction on the derivation of $M \rightarrow$ N ．
2．From Proposition 2．10，Proposition 3.6 （1）and Lemma 2．11．

Lemma 3.7 （Main lemma［6］）．Let $M={ }_{\beta}^{k} N$ with length $k=l+r$ ，where r is the number of occur－ rences of right arrow \rightarrow in $={ }_{\beta}^{k}$ ，and l is that of left arrow \leftarrow in $={ }_{\beta}^{k}$ ．Then we have both $M^{r *} \leftrightarrow N$ and
$M \rightarrow N^{l *}$.
Proof．By induction on the length of $={ }_{\beta}^{k}$ ．
（1）Case of $k=1$ is handled by Lemma 3．4．
（2－1）Case of $(k+1)$ ，where $M={ }_{\beta}^{k} M_{k} \rightarrow M_{k+1}$ ： From the induction hypothesis，we have $M_{k} \rightarrow$ $M^{r *}$ and $M \rightarrow M_{k}^{l *}$ where $l+r=k$ ．
From $M_{k} \rightarrow M_{k+1}$ ，Lemma 3.4 gives $M_{k+1} \rightarrow$ M_{k}^{*} ，and then $M_{k}^{*} \rightarrow M^{(r+1) *}$ from the induc－ tion hypothesis $M_{k} \rightarrow M^{r *}$ and Proposition 3．6．Hence，we have $M_{k+1} \rightarrow M^{(r+1) *}$ ．On the other hand，we have $M_{k}^{l *} \rightarrow M_{k+1}^{l *}$ from $M_{k} \rightarrow M_{k+1}$ and the repeated application of Proposition 3．6．Then the induction hypoth－ esis $M \rightarrow M_{k}^{l *}$ derives $M \rightarrow M_{k+1}^{l *}$ ，where $l+(r+1)=k+1$ ．
（2－2）Case of $(k+1)$ ，where $M={ }_{\beta}^{k} M_{k} \leftarrow M_{k+1}$ ： From the induction hypothesis，we have $M_{k} \rightarrow$ $M^{r *}$ and $M \rightarrow M_{k}^{l *}$ where $l+r=k$ ，and hence $M_{k+1} \rightarrow M^{r *}$ ．From $M_{k+1} \rightarrow M_{k}$ and Lemma 3．4，we have $M_{k} \rightarrow M_{k+1}^{*}$ ，and then $M_{k}^{l *} \rightarrow M_{k+1}^{(l+1) *}$ ．Hence，$M \rightarrow M_{k+1}^{(l+1) *}$ from the induction hypothesis $M \rightarrow M_{k}^{l *}$ ，where $(l+1)+r=k+1$ ．

Given $M_{0}={ }_{\beta}^{k} \quad M_{k}$ with reduction sequence $\left[M_{0}, \ldots, M_{k}\right]$ ，then for natural numbers i and j with $0 \leq i \leq j \leq k$ ，we write $\sharp r[i, j]$ for the number of occurrences of right arrow \rightarrow appeared in $M_{i}={ }_{\beta}^{(j-i)} M_{j}$ ，and $\sharp l[i, j]$ for that of left ar－ row \leftarrow in $M_{i}={ }_{\beta}^{(j-i)} M_{j}$ ．In particular，we have $\sharp l[0, k]+\sharp r[0, k]=k$ ．
Corollary 3.8 （Main lemma refined［6］）．Let $M_{0}={ }_{\beta}^{k} M_{k}$ with reduction sequence $\left[M_{0}, M_{1}, \ldots, M_{k}\right]$ ． Let $r=\sharp r[0, k]$ and $l=\sharp l[0, k]$ ．Then we have $M_{0} \rightarrow M_{r}^{m_{l} *}$ and $M_{r}^{m_{l} *} \leftrightarrows M_{k}$ ，where $m_{l}=$ $\sharp l[0, r] \leq \min \{l, r\}$ ．

Proof．From the main lemma，we have two reduc－
tion paths such that $M_{0} \rightarrow M_{k}^{l *}$ and $M_{0}^{r *} \longleftrightarrow M_{k}$ ， where the paths have a crossed point that is the term $M_{r}^{n *}$ for some $n \leq k$ as follows：Let m_{l} be $\sharp l[0, r]$ ，then $\sharp l[r, k]=\left(l-m_{l}\right)$ and $\sharp r[r, k]=m_{l}$ ． Hence，from the main lemma，we have $M_{0} \rightarrow$ $M_{r}^{m_{l}{ }^{*}} \nleftarrow M_{k}$ where $m_{l} \leq \min \{l, r\}$ ．Moreover，we have $M_{r} \rightarrow M_{k}^{\left(l-m_{l}\right) *}$ by the main lemma again， and then $M_{r}^{m_{l}{ }^{*}} \rightarrow M_{k}^{\left(\left(l-m_{l}\right)+m_{l}\right) *}$ from the re－ peated application of Proposition 3．6．Therefore， we indeed have $M_{0} \rightarrow M_{r}^{m_{l^{*}}} \rightarrow M_{k}^{l *}$ ．Similarly，we have $M_{0}^{r *} \llbracket M_{r}^{m_{l} *} \leftrightarrow M_{k}$ as well．

Observe that a crossed point $M_{r}^{m_{l^{*}}}$ in Corollary 3.8 gives a＂good＂common contractum such that the number m_{l} ，i．e．，iteration of the translation $*$ is minimum．Consider two reduction paths：（i）a reduction path from $M_{r}^{m_{l}{ }^{*}}$ to $M_{0}^{r *}$ ，and（ii）a re－ duction path from $M_{r}^{m_{l} *}$ to $M_{k}^{l *}$ ，see the picture in the proof of Corollary 3．8．In general，the reduc－ tion paths（i）and（ii）form the boundary line be－ tween common contractums and non－common ones． Let B be a term in the boundary（i）or（ii）．Then any term M such that $B \rightarrow M$ is a common con－ tractum of M_{0} and M_{k} ．In this sense，the term $M_{r}^{m_{l}{ }^{*}}$ where $0 \leq m_{l} \leq \min \{l, r\}$ can be consid－ ered as an optimum common reduct of M_{0} and M_{k} in terms of Takahashi translation．Moreover，the refined lemma gives a divide and conquer method such that $M_{0}={ }_{\beta}^{k} M_{k}$ is divided into $M_{0}={ }_{\beta}^{r} M_{r}$ and $M_{r}={ }_{\beta}^{l} M_{k}$ ，where the base case is a valley such that $M_{0} \rightarrow M_{r} \leftarrow M_{k}$ with $m_{l}=0$ ．

The results of Lemma 3.7 and Corollary 3.8 can be unified as follows．The main theorem shows that every term in the reduction sequence $l s$ of $M_{0}={ }_{\beta}^{k} M_{k}$ generates a common contractum：For every term M in $l s$ ，there exists a natural number $n \leq \max \{l, r\}$ such that $M^{n *}$ is a common contrac－ tum of M_{0} and M_{k} ．Moreover，there exist a term N in $l s$ and a natural number $m \leq \min \{l, r\}$ such that $N^{m *}$ is a common contractum of all the terms
in $l s$ ．
Theorem 3.9 （Main theorem for β－equality ［6］）．Let $M_{0}=_{\beta}^{k} \quad M_{k}$ with reduction sequence $\left[M_{0}, \ldots, M_{k}\right] . \quad$ Let $l=\sharp l[0, k]$ and $r=\sharp r[0, k]$ ．
Then there exist the following common reducts：
1．We have $M_{0} \rightarrow M_{r-i}^{\sharp r[r-i, k] *}$ and $M_{r-i}^{\sharp r[r-i, k] *} \leftarrow$ M_{k} for each $i=0, \ldots, r$ ．We also have $M_{0} \rightarrow M_{r+j}^{\sharp l[0, r+j] *}$ and $M_{r+j}^{\sharp[0, r+j] *} \leftarrow M_{k}$ for each $j=0, \ldots, l$ ．
2．For every term M in the reduction sequence， we have $M \rightarrow M_{r}^{m_{l}{ }^{*}}$ where $m_{l}=\sharp l[0, r]$ ．

Proof．Both 1 and 2 are proved similarly from Lemma 3．7，Corollary 3．8，and monotonicity．We show the case 2 here．Let M_{i} be a term in the re－ duction sequence of $M_{0}={ }_{\beta}^{k} M_{k}$ where $0 \leq i \leq r$ ． Take $a=\sharp r[0, i]$ ，then $M_{a}^{\sharp l[0, a]}$ is a crossed point of $M_{0} \rightarrow M_{i}^{\sharp[[0, i] *}$ and $M_{i} \rightarrow M_{0}^{\sharp r[0, i] *}$ ．From $M_{i} \rightarrow$ $M_{r}^{\sharp l[i, r] *}$ and monotonicity，we have $M_{i}^{\sharp[[0, i] *} \rightarrow$ $M_{r}^{m_{l} *}$ where $m_{l}=\sharp l[0, i]+\sharp l[i, r]$ ．Hence，we have $M_{i} \rightarrow M_{a}^{\sharp[[0, a] *} \rightarrow M_{i}^{\sharp l[0, i]^{*}} \rightarrow M_{r}^{m_{l^{*}}}$ ．The case of $r \leq i \leq k$ is also verified similarly．

Note that the case of $i=r$ and $j=l$ implies the main lemma，since $\sharp r[0, k]=r$ and $\sharp l[0, r+l]=$ $\sharp l[0, k]=l$ ．Note also that the case of $i=0=j$ implies the refinement，since $\sharp l[0, r]=m_{l}=\sharp r[r, k]$ ． Corollary 3.10 （Confluence）．Let $P_{n} \leftarrow \cdots \leftarrow$ $P_{1} \leftarrow M \rightarrow Q_{1} \rightarrow \cdots \rightarrow Q_{m}(1 \leq n \leq m)$ ．Then we have $P_{n} \rightarrow Q_{m}^{n *}$ and $Q_{m} \rightarrow Q_{m}^{n *}$ ．We also have $P_{n} \rightarrow Q_{(m-n)}^{n *}$ and $Q_{m} \rightarrow Q_{(m-n)}^{n *}$ ．

Proof．From the main lemma and the refinement where $Q_{0} \equiv M$ ．

4 Quantitative analysis of Church－ Rosser theorem

Following the results and proof methods in the previous section，the size of common reducts and the number of reduction steps leading to a common reduct are investigated in detail in［6］．The method
is a general principle and indeed can be extended to handle any system with the Z－property［5］．
Let (A, \rightarrow) be an abstract rewriting system where the reduction \rightarrow is a binary relation on the set A ． An element of A is also called a term，and suppose that the size of a term M is well defined，denoted by a natural number $|M|$ ．

Following Definitions 2.2 and 2．3，we define the reflexive transitive closure of \rightarrow with a reduction sequence $l s$ ，denoted by \rightarrow^{n} with length n of $l s$ ． We also define the reflexive transitive symmetric closure of \rightarrow with a sequence $l s$ ，denoted by $=_{A}^{n}$ with length n of $l s$ ．From the definition，$M={ }_{A} N$ with sequence $l s$ if and only if there exists a finite sequence of terms $M_{0}, \ldots, M_{n} \in A(n \geq 0)$ such that $l s=\left[M_{0}, \ldots, M_{n}\right], M_{0} \equiv M, M_{n} \equiv N$ and ei－ ther $M_{i} \rightarrow M_{i+1}$ or $M_{i} \leftarrow M_{i+1}$ for $0 \leq i \leq n-1$ ． For natural numbers i and j with $0 \leq i \leq j \leq n$ ，we write $\sharp r[i, j]$ for the number of occurrences of right arrow \rightarrow appeared in $M_{i}={ }_{A}^{(j-i)} M_{j}$ ，and $\sharp l[i, j]$ for the number of occurrences of left arrow \leftarrow appeared in $M_{i}={ }_{A}^{(j-i)} M_{j}$ ．

For quantitative analysis，we prepare important measure functions，TermSize，Mon and Rev．
Definition 4.1 （TermSize）．By induction on the derivation，we define $\operatorname{TermSize}\left(M={ }_{A} N\right)$ as fol－ lows：

1．If $M \rightarrow^{n} N$ with reduction sequence（list） $l s$ ，then TermSize $\left(M \rightarrow^{n} N\right)$ is defined by $\max ($ map $(\mathrm{fn} x \Rightarrow|x|) l s)$ ．
2．If $M={ }_{A} N$ is derived from $N={ }_{A} M$ ， then $\operatorname{TermSize}\left(\begin{array}{lll}M & ={ }_{A} & N\end{array}\right)$ is defined by TermSize $\left(N={ }_{A} M\right)$ ．
3．If $M={ }_{A} N$ is derived from $M={ }_{A} P$ and $P={ }_{A} N$ ，then define $\operatorname{TermSize}\left(M={ }_{A} N\right)$ as $\max \left\{\operatorname{TermSize}\left(M={ }_{A} P\right)\right.$ ， $\operatorname{TermSize}\left(P={ }_{A}\right.$ $N)\}$ ．
Proposition 4.2 （TermSize）．Let $M_{0}={ }_{A}^{k} M_{k}$ with sequence ls．For each term M in $l s$ ，we have $|M| \leq \operatorname{TermSize}\left(M_{0}={ }_{A}^{k} M_{k}\right)$ ．

Proof．By induction on the derivation of $={ }_{A}$ ．
We suppose an abstract rewriting system (A, \rightarrow) having the following function f from A to A to－ gether with measure functions（bound functions） Mon and Rev to the set of natural numbers，such that（i）if $M \rightarrow^{n} N(n \geq 1)$ then $f(M) \rightarrow^{l} f(N)$ where $l \leq \operatorname{Mon}(|M|, n)$ ，and（ii）if $M \rightarrow N$ then $N \rightarrow{ }^{l} f(M)$ where $l \leq \operatorname{Rev}(|M|)$ ，provided that the measure functions are monotonic．We write $f^{n+1}(M)=f\left(f^{n}(M)\right)$ and $f^{0}(M)=M$ ．

Then it is straightforward to reformulate Lemma 3.7 and Corollary 3.8 in terms of abstraction rewrit－ ing systems．
Proposition 4.3 （Lemma 3.7 revised）．Let $M={ }_{A}^{k}$ N with length $k=l+r$ ，where $r=\sharp r[0, k]$ ， $l=\sharp l[0, k]$ and $\mathrm{B}=\operatorname{TermSize}\left(M={ }_{A}^{k} N\right)$ ．Then we have $f^{r}(M) \leftarrow^{a} N$ such that $a \leq \operatorname{Main}\left(M={ }_{A}^{k} N\right)$ ， where the function Main is defined by induction on k，as follows：

1． $\operatorname{Main}(M \leftarrow N)=1$
2． $\operatorname{Main}(M \rightarrow N)=\operatorname{Rev}(|M|)$
3． $\operatorname{Main}\left(M={ }_{A}^{n} P \leftarrow Q\right)=\operatorname{Main}\left(M={ }_{A}^{n} P\right)+1$
4． $\operatorname{Main}\left(M={ }_{A}^{n} P \rightarrow Q\right)=\operatorname{Mon}(\mathrm{B}, p)+\operatorname{Rev}(\mathrm{B})$ ， where $p=\operatorname{Main}\left(M={ }_{A}^{n} P\right)$ ．

Proof．From the proof of Lemma 3．7．Particularly in the last case where $f^{\sharp r[0, n]+1}(M) \leftarrow^{a} f(P) \leftarrow^{b}$ Q ，we have $a+b \leq \operatorname{Mon}(|P|, p)+\operatorname{Rev}(|P|) \leq$ $\operatorname{Mon}(\mathrm{B}, p)+\operatorname{Rev}(\mathrm{B})$ ．

Proposition 4.4 （Corollary 3.8 revised）．Let $M={ }_{A}^{k} N$ with reduction sequence $\left[M_{0}, M_{1}, \ldots, M_{k}\right]$ ， where $r=\sharp r[0, k], l=\sharp l[0, k]$ and $m_{l}=\sharp l[0, r]$ ． Then we have $M \rightarrow{ }^{a} f^{m_{l}}\left(M_{r}\right)$ and $f^{m_{l}}\left(M_{r}\right) \Vdash^{b}$ N ，where $a \leq \operatorname{Main}\left(M_{r}={ }_{A}^{r} M\right)$ and $b \leq$ $\operatorname{Main}\left(M_{r}={ }_{A}^{l} N\right)$ ．

Proof．From Corollary 3.8 and Proposition 4．3．
We remark that from Lemma 3.4 and Proposition 3．6，the measure function Main is a function in the fourth level of the Grzegorczyk hierarchy in the case
of λ－calculus［6］．

5 Compositional Z－property

We begin with Dehornoy and van Oostrom＇s Z theorem，and then extend it for compositional func－ tions，called the compositional Z ．It gives a suffi－ cient condition for that a compositional function satisfies the Z－property，by dividing a rewriting sys－ tem into two parts．
Definition 5.1 （（Weak）Z－property［15］）．Let (A, \rightarrow) be an abstract rewriting system，and \rightarrow be the reflexive transitive closure of \rightarrow ．Let \rightarrow_{x} be another relation on A ，and \rightarrow_{x} be its reflexive transitive closure．

1．A mapping f satisfies the weak Z－property for \rightarrow by \rightarrow_{x} if $M \rightarrow N$ implies $N \rightarrow_{\mathrm{x}} f(M) \rightarrow_{\mathrm{x}} f(N)$ for any $M, N \in A$ ．
2．A mapping f satisfies the Z－property for \rightarrow if it satisfies the weak Z－property by \rightarrow itself．

When f satisfies the（weak）Z－property，we also say that f is（weakly）Z ．

It becomes clear why we call it the Z－property when we draw the condition as the following dia－ gram．

Theorem 5．2（Z theorem［5］）．If there exists a mapping satisfying the Z－property for an abstract rewriting system，then it is confluent．

This theorem has been applied to confluence proofs for some variants of λ－calculus in［5］［13］［1］ ［16］．In fact，we can often prove that the usual complete developments have the Z－property．
The compositional Z is the following，which is easily proved from Theorem 5.2 with the diagrams in Figure 1.
Theorem 5.3 （Compositional Z［15］）．Let (A, \rightarrow) be an abstract rewriting system，and \rightarrow be $\rightarrow_{1} \cup$ \rightarrow_{2} ．If there exist mappings $f_{1}, f_{2}: A \rightarrow A$ such

Figure 1 Proof of Theorem 5.3
that
（a）f_{1} is Z for \rightarrow_{1}
（b）$M \rightarrow_{1} N$ implies $f_{2}(M) \rightarrow f_{2}(N)$
（c）$M \rightarrow f_{2}(M)$ holds for any $M \in \operatorname{Im}\left(f_{1}\right)$
（d）$f_{2} \circ f_{1}$ is weakly Z for \rightarrow_{2} by \rightarrow ，
then $f_{2} \circ f_{1}$ is Z for (A, \rightarrow) ，and hence (A, \rightarrow) is confluent．
One example of the compositional Z is a conflu－ ence proof for the $\beta \eta$－reduction on the untyped λ－ calculus（although it can be directly proved by the Z theorem as in［13］）．Let $\rightarrow_{1}=\rightarrow_{\eta}, \rightarrow_{2}=\rightarrow_{\beta}$ ， and f_{1} and f_{2} be the usual complete developments of η and β ，respectively．Then，it is easy to see the conditions of the compositional Z hold．The point is that we can forget the other reduction in the definition of each complete development．
Furthermore，we have another sufficient condi－ tion for the Z－property of compositional functions as follows．It is a special case of the compositional Z where $f_{1}(M)=f_{1}(M)$ holds for any $M \rightarrow_{1} N$ ． All of the examples（except for $\beta \eta$ above）of the application of compositional Z in［15］are in this case．
Corollary 5.4 （［15］）．Let (A, \rightarrow) be an abstract rewriting system，and \rightarrow be $\rightarrow_{1} \cup \rightarrow_{2}$ ．Suppose that there exist mappings $f_{1}, f_{2}: A \rightarrow A$ such that
（a）$M \rightarrow_{1} N$ implies $f_{1}(M)=f_{1}(N)$
（b）$M \rightarrow 1 f_{1}(M)$ for any M
（c）$M \rightarrow f_{2}(M)$ holds for any $M \in \operatorname{Im}\left(f_{1}\right)$
（d）$f_{2} \circ f_{1}$ is weakly Z for \rightarrow_{2} by \rightarrow ．
Then，$f_{2} \circ f_{1}$ is Z for (A, \rightarrow) ，and hence (A, \rightarrow) is confluent．

Proof．It is easily proved from Theorem 5．3．The condition（a）in Theorem 5.3 comes from the new conditions（a）and（b），and（b）in Theorem 5.3 is not necessary since we have $f_{2}\left(f_{1}(M)\right)=f_{2}\left(f_{1}(N)\right)$ for any $M \rightarrow{ }_{1} N$ ．

Corollary 5.4 can be seen as generalization of the Z－ property modulo，proposed by Accattoli and Kesner ［1］．For an abstract rewriting system (A, \rightarrow) and an equivalence relation \sim on A ，the reduc－ tion modulo \sim ，denoted $M \rightarrow \sim N$ ，is defined as $M \sim P \rightarrow Q \sim N$ for some P and Q ．The Z－ property modulo says that it is a sufficient condi－ tion for the confluence of $\rightarrow \sim$ that there exists a mapping which is well－defined on \sim and weakly Z for \rightarrow by $\rightarrow \sim$ ．If we consider \sim as the first re－ duction relation \rightarrow_{1} ，and define $f_{1}(M)$ as a fixed representative of the equivalence class including M ， then the conditions of the Z－property modulo im－ plies the conditions of the compositional Z ，since the reflexive transitive closure of $\rightarrow \cup \sim$ is $\rightarrow \sim$ ．

6 Quantitative analysis under compo－ sitional Z－property

The two approaches in Sections 4 and 5 are nat－ urally unified into a single framework．For this， we introduce the compositional Z－property together with measure functions Mon，Rev and Eval as mod－ ules of bound functions．
Proposition 6．1．Let (A, \rightarrow) be an abstract rewriting system，and \rightarrow be $\rightarrow_{1} \cup \rightarrow_{2}$ ．Suppose that there exist functions $f_{1}, f_{2}: A \rightarrow A$ and mono－
tonic measure functions $\operatorname{Rev}_{1}, \operatorname{Rev}_{2}, \mathrm{Eval}_{2}$ and Mon such that all of the following conditions hold．

1．f_{1} is Z for \rightarrow_{1} ：
If $M \rightarrow{ }_{1} N$ then $N \rightarrow{ }_{1}^{a} f_{1}(M) \rightarrow{ }_{1} f_{1}(N)$ ， where $a \leq \operatorname{Rev}_{1}(|M|)$ ．
2．If $M \rightarrow{ }_{1} N$ then $f_{2}(M) \rightarrow f_{2}(N)$ ．
3．$M \rightarrow{ }^{a} f_{2}(M)$ holds for any $M \in \operatorname{Im}\left(f_{1}\right)$ ， where $a \leq \operatorname{Eval}_{2}(|M|)$ ．
4．$f_{2} \circ f_{1}$ is weakly Z for \rightarrow_{2} by \rightarrow ： If $M \rightarrow{ }_{2} N$ then $N \rightarrow{ }^{a} f_{2}\left(f_{1}(M)\right) \rightarrow f_{2}\left(f_{1}(N)\right)$ ， where $a \leq \operatorname{Rev}_{2}(|M|)$ ．
5．If $M \rightarrow{ }^{a} N$ then $f_{2}\left(f_{1}(M)\right) \rightarrow{ }^{b} f_{2}\left(f_{1}(N)\right)$ ， where $b \leq \operatorname{Mon}(|M|, a)$ ．
Let $f=f_{2} \circ f_{1}$ ．If $M={ }_{A}^{k} N$ with length $k=$ $l+r$ where $r=\sharp r[0, k], l=\sharp l[0, k]$ and $\mathrm{B}=$ TermSize $\left(M={ }_{A}^{k} N\right)$ ，then we have $f^{r}(M) \Vdash^{a} N$ such that $a \leq \operatorname{Main}_{Z}\left(M={ }_{A}^{k} N\right)$ ，where Main_{Z} is defined by induction on k ，as follows：

1． $\operatorname{Main}_{Z}(M \leftarrow N)=1$
2． $\operatorname{Main}_{Z}\left(M \rightarrow_{1} N\right)=\operatorname{Rev}_{1}(|M|)+\operatorname{Eval}_{2}\left(\left|f_{1}(M)\right|\right)$
3． $\operatorname{Main}_{Z}\left(M \rightarrow_{2} N\right)=\operatorname{Rev}_{2}(|M|)$
4． $\operatorname{Main}{ }_{Z}\left(M={ }_{A}^{n} P \leftarrow Q\right)=$ $\operatorname{Main}_{Z}\left(M={ }_{A}^{n} P\right)+1$
5． $\operatorname{Main}{ }_{Z}\left(M={ }_{A}^{n} P \rightarrow_{1} Q\right)=$ $\operatorname{Mon}(\mathrm{B}, p)+\operatorname{Eval}_{2}(\mathrm{~B})+\operatorname{Rev}_{1}(\mathrm{~B})$ ， where $p=\operatorname{Main}_{Z}\left(M={ }_{A}^{n} P\right)$
6． $\operatorname{Main}_{Z}\left(M={ }_{A}^{n} \quad P \rightarrow_{2} Q\right)=\operatorname{Mon}(\mathrm{B}, p)+$ $\operatorname{Rev}_{2}(\mathrm{~B})$ ，where $p=\operatorname{Main}_{Z}\left(M={ }_{A}^{n} P\right)$ ．

Proof．From the proof of Lemma 3.7 and the fact that $f=f_{2} \circ f_{1}$ is Z for (A, \rightarrow) ．

Now we have the Church－Rosser theorem under the assumption of Proposition 6．1．
Theorem 6．2（Church－Rosser theorem）．Let $M={ }_{A}^{k} N$ with reduction sequence $\left[M_{0}, M_{1}, \ldots, M_{k}\right]$ where $r=\sharp r[0, k], l=\sharp l[0, k]$ and $m_{l}=\sharp l[0, r]$ ． Then we have $M \rightarrow^{a} f^{m_{l}}\left(M_{r}\right)$ and $f^{m_{l}}\left(M_{r}\right) \Vdash^{b}$ N ，where $a \leq \operatorname{Main}_{Z}\left(M_{r}=_{A}^{r} M\right)$ and $b \leq$ $\operatorname{Main}_{Z}\left(M_{r}={ }_{A}^{l} N\right)$ and $f=f_{2} \circ f_{1}$ ．

Proof．From Proposition 6．1．

7 Concluding remarks

In this paper，first we investigated directly the Church－Rosser theorem for β－equality construc－ tively from the viewpoint of Takahashi translation ［22］．Our investigation shows that a common con－ tractum of M and N such that $M={ }_{\beta} N$ is deter－ mined by（i）M and the number of occurrences of reduction (\rightarrow) appeared in $=_{\beta}$ ，and also by（ii）N and that of reversed reduction (\leftarrow) ．In terms of iteration of Takahashi translation，this characteri－ zation of the Church－Rosser theorem makes it pos－ sible to analyse how large common contractums are and how many reduction－steps are required to ob－ tain them．From this，we obtained an upper bound function for the theorem in the fourth level of the Grzegorczyk hierarchy．

Next，we demonstrated that the proof method is available as well under a general framework of the compositional Z［15］．For this extension，the mea－ sure functions constructed for quantitative analy－ sis of the Church－Rosser theorem are naturally ab－ stracted as fundamental modules of bound func－ tions．This approach makes it possible to analyze quantitative properties of abstract rewriting sys－ tems under the framework of the compositional Z．

Corollary 5.4 can be seen as generalization of the Z－property modulo，proposed by［1］．Moreover，it would be interesting to extend the compositional Z－ property to cooperate with confluent modulo equiv－ alence such as in［10］for applications to practical problems．

References

［1］B．Accattoli and D．Kesner：The Permutative λ－calculus，International Conference on Logic Pro－ gramming and Automated Reasoning（LPAR 2012）， Proceedings，no． 7180 in LNCS，pp．15－22， 2012.
［2］H．P．Barendregt：The lambda Calculus．Its Syn－
tax and Semantics，North－Holland，revised edition， 1984.
［ 3 ］A．Church and J．B．Rosser：Some properties of conversion，Transactions of the American Mathe－ matical Society 39 （3），pp．472－482， 1936.
［4］H．B．Curry，R．Feys，and W．Craig：Combina－ tory Logic，Volume1，North－Holland，Third Print－ ing， 1974.
［5］P．Dehornoy and V．van Oostrom：Z，proving confluence by monotonic single－step upper bound functions，Logical Models of Reasoning and Com－ putation， 2008.
［6］K．Fujita：On upper bounds on the Church－ Rosser theorem，Electronic Proceedings in Theoret－ ical Computer Science，3rd Workshop on Rewriting Techniques for Program Transformation and Eval－ uation，June 23， 2016.
［7］A．Grzegorczyk：Some classes of recursive func－ tions，ROZPRAWY MATEMATYCZNE IV，pp．1－ 48， 1953.
［8］J．R．Hindley：Reductions of residuals are finite， Transactions of the American Mathematical Society 240，pp．345－361， 1978.
［9］J．R．Hindley and J．P．Seldin：Lambda－calculus and Combinators，An Introduction，Cambridge University Press，Cambridge， 2008.
［10］G．Huet：Confluence Reductions：Abstract Properties and Applications to Term Rewriting Sys－ tems，Journal of the Association for Computing Ma－ chinery 27－4，pp．797－821， 1980.
［11］J．Ketema and J．G．Simonsen：Least Upper Bounds on the Size of Confluence and Church－ Rosser Diagrams in Term Rewriting and λ－ Calculus，ACM Transactions on Computational Logic 14 （4），31：1－28， 2013.
［12］Z．Khasidashvili：β－reductions and β－developments with the least number of steps，Lecture Notes in Computer Science 417，pp．105－111， 1988.
［13］Y．Komori，N．Matsuda，and F．Yamakawa：A

Simplified Proof of the Church－Rosser Theorem， Studia Logica 102，pp．175－183， 2014.
［14］R．Loader：Notes on Simply Typed Lambda Cal－ culus，Tech．Rep．ECS－LFCS－98－381，Edinburgh， 1998.
［15］K．Nakazawa and K．Fujita：Compositional Z： Confluence proofs for permutative conversion，Stu－ dia Logica published online：May 2016.
［16］K．Nakazawa and T．Nagai：Reduction System for Extensional Lambda－mu Calculus，25th Inter－ national Conference on Rewriting Techniques and Applications joint with the 12th International Con－ ference on Typed Lambda Calculi and Applications （RTA－TLCA 2014），Proceedings，no． 8560 in LNCS， pp．349－363， 2014.
［17］H．Schwichtenberg：Complexity of normaliza－ tion in the pure lambda－calculus，In A．S．Troelstra and D．van Dalen editors，THE L．E．J．BROUWER CENTENARY SYMPOSIUM，pp．453－457， 1982.
［18］M．H．Sørensen：A note on shortest develop－ ments，Log．Meth．in Comput．Science 3 （4：2），pp． 1－8， 2007.
［19］R．Statman：The typed λ－calculus is not elemen－ tary recursive，Theoret．Comput．Sci．9，pp．73－81， 1979.
［20］V．van Oostrom：Reduce to the max，UU－CWI， July 1999.
［21］R．de Vrijer：A direct proof of the finite devel－ opments theorem，J．Symb．Log．50－2，pp．339－343， 1985.
［22］M．Takahashi：Parallel reductions in λ－calculus， J．Symb．Comput．7，pp．113－123， 1989.
［23］M．Takahashi：Theory of Computation：Com－ putability and Lambda Calculus，Kindai Kagaku Sya， 1991.
［24］H．Tonino and K．Fujita：On the adequacy of representing higher order intuitionistic logic as a pure type system，Ann．Pure Appl．Logic 57，pp． 251－276， 1992.

[^0]: チャーチ・ロッサーの定理と合成的 Z－特性。
 藤田 憲悦，群馬大学大学院理工学府，Graduate School of Science and Technology，Gunma University．
 中澤巧爾，名古屋大学大学院情報科学研究科，Graduate School of Information Science，Nagoya University．

