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Church-Rosser Theorem and Compositional

Z-Property

Ken-etsu Fujita and Koji Nakazawa

The Church-Rosser theorem is one of the most fundamental properties on rewriting systems. In order to

prove the theorem for beta-equality, Church and Rosser extracted the key property called confluence or

so-called Strip lemma. Then the theorem can be proved by induction on the number of peaks from the

key property. Here, the key property can be verified by using well-known notions such as parallel reduc-

tion and residuals. Although confluence and the Church-Rosser property are equivalent to each other, the

property of confluence is a special case of the theorem. First, we investigate directly the theorem from the

viewpoint of Takahashi translation, which provides a new and constructive proof of the theorem. The proof

method has recently been established by the first author. Next, we show that the method is available as

well under a general framework of the compositional Z (Nakazawa-Fujita) that makes it possible to apply a

divide-and-conquer method for proving the Church-Rosser property.

1 Introduction

The Church-Rosser theorem [3] is one of the

most fundamental properties on rewriting systems,

which guarantees uniqueness of computation and

consistency of a formal system. For instance, for

proof trees and formulae of logic the unique nor-

mal forms of the corresponding terms and types in a

Pure Type System (PTS) can be chosen as their de-

notations [24] via the Curry-Howard isomorphism.

The Church-Rosser theorem for β-equality states

that if M =β N then there exists P such that

M ↠ P and N ↠ P . Here, we write M =β N iff M

is obtained from N by a finite series of reductions

(↠) and reversed reductions (↞). As the Church-

Rosser theorem for β-reduction (confluence) has

been well studied, to the best of our knowledge the

チャーチ・ロッサーの定理と合成的 Z-特性.
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Church-Rosser theorem for β-equality is always sec-

ondary proved as a corollary from the theorem for

β-reduction [3] [4] [2] [9].

In order to prove the theorem, Church and Rosser

extracted the key property of confluence. The prop-

erty states that if M ↠ N1 and M ↠ N2 then we

have N1 ↠ P and N2 ↠ P for some P . Two proof

techniques of the property are well known; trac-

ing the residuals of redexes along a sequence of re-

ductions [3] [2] [9], and working with parallel reduc-

tion [4] [2] [9] [22] known as the method of Tait and

Martin-Löf. Moreover, a simpler proof of the theo-

rem is established only with Takahashi’s translation

[22] (the Gross-Knuth reduction strategy [2]), but

with no use of parallel reduction [14] [5].

One of our motivation is to analyze quantitative

properties in general of reduction systems. For in-

stance, measures for developments are investigated

by Hindley [8] and de Vrijer [21]. Statman [19]

proved that deciding the βη-equality of typable λ-

terms is not elementary recursive. Schwichtenberg

[17] analysed the complexity of normalization in
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the simply typed lambda-calculus, and showed that

the number of reduction steps necessary to reach

the normal form is bounded by a function at the

fourth level of the Grzegorczyk hierarchy ε4 [7],

i.e., a non-elementary recursive function. Ketema

and Simonsen [11] extensively studied valley sizes of

confluence and the Church-Rosser property in term

rewriting and λ-calculus as a function of given term

sizes and reduction lengths. However, there are no

known bounds for the Church-Rosser theorem for

β-equality up to our knowledge.

In this study, we are also interested in quantita-

tive analysis of the witness of the Church-Rosser

theorem: how to find common contractums with

the least size and with the least number of reduc-

tion steps. For the theorem for β-equality (M =β

N implies M ↠l3 P and N ↠l4 P for some P ), we

study functions that set bounds on the least size

of a common contractum P , and the least number

of reduction steps l3 and l4 required to arrive at

a common contractum, involving the term sizes of

M and N , and the length of =β . For the theo-

rem for β-reduction (M ↠l1 N1 and M ↠l2 N2

implies N1 ↠l3 P and N2 ↠l4 P for some P ), we

study functions that set bounds on the least size

of a common contractum P , and the least number

of reduction steps l3 and l4 required to arrive at a

common contractum, involving the term size of M

and the lengths of l1 and l2.

In this paper, first we investigate directly the

Church-Rosser theorem for β-equality construc-

tively from the viewpoint of Takahashi translation

[22]. Although the two statements are equivalent to

each other, the theorem for β-reduction is a special

case of that for β-equality. Our investigation shows

that a common contractum of M and N such that

M =β N is determined by (i) M and the number

of occurrences of reduction (→) appeared in =β ,

and also by (ii) N and that of reversed reduction

(←). The main lemma plays a key role and reveals

a new invariant involved in the equality =β , inde-

pendently of an exponential combination of reduc-

tion and reversed reduction. In terms of iteration of

Takahashi translation, this characterization of the

Church-Rosser theorem makes it possible to anal-

yse how large common contractums are and how

many reduction-steps are required to obtain them.

From this, we obtain an upper bound function for

the theorem in the fourth level of the Grzegorczyk

hierarchy.

Next, we demonstrate that the proof method

is available as well under a general framework of

the compositional Z [15]. The compositional Z-

property is an extension of the so-called Z-property

[5], which makes it possible to apply a divide-and-

conquer method for proving confluence. For this

extension, the measure functions constructed for

quantitative analysis of the Church-Rosser theorem

are abstracted as fundamental modules of bound

functions. The paper makes a contribution to quan-

titative analysis of abstract rewriting systems un-

der the framework of the compositional Z.

This paper is organized as follows. Section 1 is

devoted to background, related work, and our con-

tribution of this paper. Section 2 gives prelimi-

naries including basic definitions and notions. Fol-

lowing [6], Section 3 provides the new proof of the

Church-Rosser theorem for β-equality. Based on

this, from the viewpoint of abstract rewriting sys-

tems, reduction length for the theorem is analyzed

in Section 4. Section 5 recalls the compositional Z-

property [15]. Section 6 demonstrates quantitative

analysis of reduction systems under the framework

of the compositional Z, and this part is a new result

of the paper. Section 7 concludes with remarks, re-

lated work, and further work.

The paper is an extended abstract, and see [6] for

the details of the new proof of the Church-Rosser

theorem and quantitative analysis of the witness,

and see also [15] for the details of the compositional
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Z-property and its application.

2 Preliminaries

The set of λ-terms denoted by Λ is defined with

a countable set of variables as follows.

Definition 2.1 (λ-terms).

M,N,P,Q ∈ Λ ::= x | (λx.M) | (MN)

We write M ≡ N for the syntactical identity un-

der renaming of bound variables. We suppose that

every bound variable is distinct from free variables.

The set of free variables inM is denoted by FV(M).

If M is a subterm of N then we write M ⊑ N for

this.

Definition 2.2 (β-reduction). One step β-

reduction→ is defined as follows, where M [x := N ]

denotes a result of substituting N for every free oc-

currence of x in M .

1. (λx.M)N →M [x := N ]

2. If M → N then PM → PN , MP → MP ,

and λx.M → λx.N .

A term in the form of (λx.P )Q ⊑ M is called a

redex of M . A redex is denoted by R or S, and

we write R : M → N if N is obtained from M

by contracting the redex R ⊑ M . We write ↠
for the reflexive and transitive closure of →. If

R1 : M0 → M1, . . . , Rn : Mn−1 → Mn (n ≥ 0),

then for this we write R0 . . . Rn : M0 ↠n Mn,

and the reduction sequence is denoted by the list

[M0,M1, . . . ,Mn]. For operating on a list, we sup-

pose fundamental list functions, append, reverse,

tail (cdr), map and max.

Definition 2.3 (β-equality). A term M is β-equal

to N with reduction sequence ls, denoted by M =β

N with ls is defined as follows:

1. If M ↠ N with reduction sequence ls, then

M =β N with ls.

2. If M =β N with ls, then N =β M with

reverse(ls).

3. If M =β P with ls1 and P =β N with ls2,

then M =β N with append(ls1, tail(ls2)).

Note that M =β N with reduction sequence ls iff

there exist terms M0, . . . ,Mn(n ≥ 0) in this order

such that ls = [M0, . . . ,Mn], M0 ≡ M,Mn ≡ N ,

and either Mi → Mi+1 or Mi+1 → Mi for each

0 ≤ i ≤ n−1. In this case, we say that the length of

=β is n, denoted by =n
β . The arrow in Mi →Mi+1

is called a right arrow, and the arrow inMi+1 →Mi

is called a left arrow, denoted also by Mi ←Mi+1.

Definition 2.4 (Term size). Define a function

| | : Λ→ N as follows.

1. |x| = 1

2. |λx.M | = 1 + |M |
3. |MN | = 1 + |M |+ |N |

Definition 2.5 (Takahashi’s * and iteration). The

notion of Takahashi translation M∗ [22], that is,

the Gross-Knuth reduction strategy [2] is defined

as follows.

1. x∗ = x

2. ((λx.M)N)∗ = M∗[x := N∗]

3. (MN)∗ = M∗N∗

4. (λx.M)∗ = λx.M∗

The 3rd case above is available provided that M

is not in the form of λ-abstraction. We write an

iteration of the translation [23] as follows.

1. M0∗ = M

2. Mn∗ = (M (n−1)∗)∗

We write ♯(x ∈ M) for the free occurrence num-

ber of the variable x in M .

Lemma 2.6. |M [x := N ]| = |M | + ♯(x ∈ M) ×
(|N | − 1).

Proof. By straightforward induction on M .

Definition 2.7 (Redex(M)). A set of all redex oc-

currences in a term M is denoted by Redex(M).

The cardinality of the set Redex(M) is denoted by

♯Redex(M).

Lemma 2.8 (♯Redex(M)). We have ♯Redex(M) ≤
1
2
|M | − 1 for |M | ≥ 4.

Proof. Note that ♯Redex(M) = 0 for |M | < 4. By
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straightforward induction on M for |M | ≥ 4.

Lemma 2.9 (Substitution). If M1 ↠l1 N1 and

M2 ↠l2 N2, then M1[x := M2] ↠l N1[x := N2]

where l = l1 + ♯(x ∈M1)× l2.

Proof. By induction on the derivation of M1 ↠l1

N1. The case of l1 = 0 requires induction on

M1 ≡ N1.

Proposition 2.10 (Term size after n-step reduc-

tion). If M ↠n N (n ≥ 1) then

|N | < 8

(
|M |
8

)2n

.

Proof. By induction on n.

Lemma 2.11 (Size ofM∗). We have |M∗| ≤ 2|M|−1.

Proof. By straightforward induction on M .

3 New proof of the Church-Rosser the-

orem for β-equality

Proposition 3.1 (Complete development). We

have M ↠l M∗ where l ≤ 1
2
|M | − 1 for |M | ≥ 4.

Proof. By induction on the structure of M . Oth-

erwise by the minimal complete development [9]

with respect to Redex(M), where l ≤ ♯Redex(M) ≤
1
2
|M | − 1 from Lemma 2.8.

Definition 3.2 (Iteration of exponentials 2m
n ,

F(m,n)). Let m and n be natural numbers.

1. (1) 2m
0 = m; (2) 2m

n+1 = 22
m
n .

2. (1) F(m, 0) = m; (2) F(m,n+1) = 2F(m,n)−1.

Proposition 3.3 (Length to Mn∗). If M ↠
M∗ ↠ · · ·↠ Mn∗, then the reduction length l with

M ↠l Mn∗ is bounded by Len(|M |, n), such that

Len(|M |, n) =


0, for n = 0

1

2

n−1∑
k=0

F(|M |, k)− n, for n ≥ 1

and then we have Len(|M |, n) < 2
|M|
n−1 for n ≥ 1.

Proof. From Lemma 2.11, we have |M∗| ≤ 2|M|−1,

and hence |Mk∗| ≤ F(|M |, k) < 2
|M|
k for k ≥ 1. Let

M ↠l1 M∗ ↠l2 · · ·↠ln Mn∗. Then from Proposi-

tion 3.1, each lk is bounded by F(|M |, k − 1):

lk ≤ 1

2
|M (k−1)∗| − 1 ≤ 1

2
F(|M |, k − 1)− 1

Therefore, l is bounded by Len(|M |, n) that is

smaller than 2
|M|
n−1 for n ≥ 1.

l ≤
n∑

k=1

lk

≤ 1

2

n−1∑
k=0

F(|M |, k)− n

= Len(|M |, n)

<
1

2

n−1∑
k=0

2
|M|
k − n

< 2
|M|
n−1 − n

Lemma 3.4 (Cofinal property). If M → N then

N ↠l M∗ where l ≤ 1
2
|N | − 1 for |N | ≥ 4.

Proof. By induction on the derivation of M →
N .

Lemma 3.5. M∗[x := N∗] ↠l (M [x := N ])∗ with

l ≤ |M∗| − 1.

Proof. By induction on the structure of M .

Proposition 3.6 (Monotonicity).

1. If M → N then M∗ ↠l N∗ with l ≤ |M∗|−1.

2. If M ↠m N , then M∗ ↠l N∗ where l ≤
2|M|2

(m−1)

−m.

Proof. 1. By induction on the derivation of M →
N .

2. From Proposition 2.10, Proposition 3.6 (1) and

Lemma 2.11.

Lemma 3.7 (Main lemma [6]). Let M =k
β N with

length k = l + r, where r is the number of occur-

rences of right arrow → in =k
β, and l is that of left

arrow ← in =k
β. Then we have both Mr∗ ↞ N and



日本ソフトウェア科学会第 33回大会 (2016年度)講演論文集 5

M ↠ N l∗.

Proof. By induction on the length of =k
β .

(1) Case of k = 1 is handled by Lemma 3.4.

(2-1) Case of (k+1), where M =k
β Mk →Mk+1:

From the induction hypothesis, we have Mk ↠
Mr∗ and M ↠ M l∗

k where l + r = k.

From Mk → Mk+1, Lemma 3.4 gives Mk+1 ↠
M∗

k , and then M∗
k ↠ M (r+1)∗ from the induc-

tion hypothesis Mk ↠ Mr∗ and Proposition

3.6. Hence, we have Mk+1 ↠ M (r+1)∗. On

the other hand, we have M l∗
k ↠ M l∗

k+1 from

Mk → Mk+1 and the repeated application of

Proposition 3.6. Then the induction hypoth-

esis M ↠ M l∗
k derives M ↠ M l∗

k+1, where

l + (r + 1) = k + 1.

(2-2) Case of (k+1), where M =k
β Mk ←Mk+1:

From the induction hypothesis, we have Mk ↠
Mr∗ and M ↠ M l∗

k where l + r = k, and

hence Mk+1 ↠ Mr∗. From Mk+1 → Mk and

Lemma 3.4, we have Mk ↠ M∗
k+1, and then

M l∗
k ↠ M

(l+1)∗
k+1 . Hence, M ↠ M

(l+1)∗
k+1 from

the induction hypothesis M ↠ M l∗
k , where

(l + 1) + r = k + 1.

Given M0 =k
β Mk with reduction sequence

[M0, . . . ,Mk], then for natural numbers i and j

with 0 ≤ i ≤ j ≤ k, we write ♯r[i, j] for the

number of occurrences of right arrow → appeared

in Mi =
(j−i)
β Mj , and ♯l[i, j] for that of left ar-

row ← in Mi =
(j−i)
β Mj . In particular, we have

♯l[0, k] + ♯r[0, k] = k.

Corollary 3.8 (Main lemma refined [6]). Let

M0 =k
β Mk with reduction sequence [M0,M1, . . . ,Mk].

Let r = ♯r[0, k] and l = ♯l[0, k]. Then we have

M0 ↠ M
ml∗
r and M

ml∗
r ↞ Mk, where ml =

♯l[0, r] ≤ min{l, r}.

Proof. From the main lemma, we have two reduc-

tion paths such that M0 ↠ M l∗
k and Mr∗

0 ↞ Mk,

where the paths have a crossed point that is the

term Mn∗
r for some n ≤ k as follows: Let ml be

♯l[0, r], then ♯l[r, k] = (l − ml) and ♯r[r, k] = ml.

Hence, from the main lemma, we have M0 ↠
M

ml∗
r ↞ Mk where ml ≤ min{l, r}. Moreover, we

have Mr ↠ M
(l−ml)∗
k by the main lemma again,

and then M
ml∗
r ↠ M

((l−ml)+ml)∗
k from the re-

peated application of Proposition 3.6. Therefore,

we indeed have M0 ↠ M
ml∗
r ↠ M l∗

k . Similarly, we

have Mr∗
0 ↞ M

ml∗
r ↞ Mk as well.

Observe that a crossed point M
ml∗
r in Corollary

3.8 gives a “good” common contractum such that

the number ml, i.e., iteration of the translation ∗
is minimum. Consider two reduction paths: (i) a

reduction path from M
ml∗
r to Mr∗

0 , and (ii) a re-

duction path from M
ml∗
r to M l∗

k , see the picture in

the proof of Corollary 3.8. In general, the reduc-

tion paths (i) and (ii) form the boundary line be-

tween common contractums and non-common ones.

Let B be a term in the boundary (i) or (ii). Then

any term M such that B ↠ M is a common con-

tractum of M0 and Mk. In this sense, the term

M
ml∗
r where 0 ≤ ml ≤ min{l, r} can be consid-

ered as an optimum common reduct of M0 and Mk

in terms of Takahashi translation. Moreover, the

refined lemma gives a divide and conquer method

such that M0 =k
β Mk is divided into M0 =r

β Mr

and Mr =l
β Mk, where the base case is a valley

such that M0 ↠ Mr ↞ Mk with ml = 0.

The results of Lemma 3.7 and Corollary 3.8 can

be unified as follows. The main theorem shows

that every term in the reduction sequence ls of

M0 =k
β Mk generates a common contractum: For

every term M in ls, there exists a natural number

n ≤ max{l, r} such that Mn∗ is a common contrac-

tum of M0 and Mk. Moreover, there exist a term

N in ls and a natural number m ≤ min{l, r} such

that Nm∗ is a common contractum of all the terms
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in ls.

Theorem 3.9 (Main theorem for β-equality

[6]). Let M0 =k
β Mk with reduction sequence

[M0, . . . ,Mk]. Let l = ♯l[0, k] and r = ♯r[0, k].

Then there exist the following common reducts:

1. We have M0 ↠ M
♯r[r−i,k]∗
r−i and M

♯r[r−i,k]∗
r−i ↞

Mk for each i = 0, . . . , r. We also have

M0 ↠ M
♯l[0,r+j]∗
r+j and M

♯l[0,r+j]∗
r+j ↞ Mk for

each j = 0, . . . , l.

2. For every term M in the reduction sequence,

we have M ↠ M
ml∗
r where ml = ♯l[0, r].

Proof. Both 1 and 2 are proved similarly from

Lemma 3.7, Corollary 3.8, and monotonicity. We

show the case 2 here. Let Mi be a term in the re-

duction sequence of M0 =k
β Mk where 0 ≤ i ≤ r.

Take a = ♯r[0, i], then M
♯l[0,a]
a is a crossed point of

M0 ↠ M
♯l[0,i]∗
i and Mi ↠ M

♯r[0,i]∗
0 . From Mi ↠

M
♯l[i,r]∗
r and monotonicity, we have M

♯l[0,i]∗
i ↠

M
ml∗
r where ml = ♯l[0, i] + ♯l[i, r]. Hence, we have

Mi ↠ M
♯l[0,a]∗
a ↠ M

♯l[0,i]∗
i ↠ M

ml∗
r . The case of

r ≤ i ≤ k is also verified similarly.

Note that the case of i = r and j = l implies the

main lemma, since ♯r[0, k] = r and ♯l[0, r + l] =

♯l[0, k] = l. Note also that the case of i = 0 = j

implies the refinement, since ♯l[0, r] = ml = ♯r[r, k].

Corollary 3.10 (Confluence). Let Pn ← · · · ←
P1 ← M → Q1 → · · · → Qm (1 ≤ n ≤ m). Then

we have Pn ↠ Qn∗
m and Qm ↠ Qn∗

m . We also have

Pn ↠ Qn∗
(m−n) and Qm ↠ Qn∗

(m−n).

Proof. From the main lemma and the refinement

where Q0 ≡M .

4 Quantitative analysis of Church-

Rosser theorem

Following the results and proof methods in the

previous section, the size of common reducts and

the number of reduction steps leading to a common

reduct are investigated in detail in [6]. The method

is a general principle and indeed can be extended

to handle any system with the Z-property [5].

Let (A,→) be an abstract rewriting system where

the reduction → is a binary relation on the set A.

An element of A is also called a term, and suppose

that the size of a term M is well defined, denoted

by a natural number |M |.
Following Definitions 2.2 and 2.3, we define the

reflexive transitive closure of → with a reduction

sequence ls, denoted by ↠n with length n of ls.

We also define the reflexive transitive symmetric

closure of → with a sequence ls, denoted by =n
A

with length n of ls. From the definition, M =A N

with sequence ls if and only if there exists a finite

sequence of terms M0, . . . ,Mn ∈ A (n ≥ 0) such

that ls = [M0, . . . ,Mn], M0 ≡M , Mn ≡ N and ei-

ther Mi →Mi+1 or Mi ←Mi+1 for 0 ≤ i ≤ n− 1.

For natural numbers i and j with 0 ≤ i ≤ j ≤ n, we

write ♯r[i, j] for the number of occurrences of right

arrow → appeared in Mi =
(j−i)
A Mj , and ♯l[i, j] for

the number of occurrences of left arrow← appeared

in Mi =
(j−i)
A Mj .

For quantitative analysis, we prepare important

measure functions, TermSize, Mon and Rev.

Definition 4.1 (TermSize). By induction on the

derivation, we define TermSize(M =A N) as fol-

lows:

1. If M ↠n N with reduction sequence (list)

ls, then TermSize(M ↠n N) is defined by

max(map (fn x⇒ |x|) ls).
2. If M =A N is derived from N =A M ,

then TermSize(M =A N) is defined by

TermSize(N =A M).

3. If M =A N is derived from M =A P and

P =A N , then define TermSize(M =A N)

as max{TermSize(M =A P ),TermSize(P =A

N)}.
Proposition 4.2 (TermSize). Let M0 =k

A Mk with

sequence ls. For each term M in ls, we have

|M | ≤ TermSize(M0 =k
A Mk).
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Proof. By induction on the derivation of =A.

We suppose an abstract rewriting system (A,→)

having the following function f from A to A to-

gether with measure functions (bound functions)

Mon and Rev to the set of natural numbers, such

that (i) if M ↠n N (n ≥ 1) then f(M) ↠l f(N)

where l ≤ Mon(|M |, n), and (ii) if M → N then

N ↠l f(M) where l ≤ Rev(|M |), provided that

the measure functions are monotonic. We write

fn+1(M) = f(fn(M)) and f0(M) = M .

Then it is straightforward to reformulate Lemma

3.7 and Corollary 3.8 in terms of abstraction rewrit-

ing systems.

Proposition 4.3 (Lemma 3.7 revised). Let M =k
A

N with length k = l + r, where r = ♯r[0, k],

l = ♯l[0, k] and B = TermSize(M =k
A N). Then we

have fr(M) ↞a N such that a ≤ Main(M =k
A N),

where the function Main is defined by induction on

k, as follows:

1. Main(M ← N) = 1

2. Main(M → N) = Rev(|M |)
3. Main(M =n

A P ← Q) = Main(M =n
A P ) + 1

4. Main(M =n
A P → Q) = Mon(B, p) + Rev(B),

where p = Main(M =n
A P ).

Proof. From the proof of Lemma 3.7. Particularly

in the last case where f ♯r[0,n]+1(M) ↞a f(P ) ↞b

Q, we have a + b ≤ Mon(|P |, p) + Rev(|P |) ≤
Mon(B, p) + Rev(B).

Proposition 4.4 (Corollary 3.8 revised). Let

M =k
A N with reduction sequence [M0,M1, . . . ,Mk],

where r = ♯r[0, k], l = ♯l[0, k] and ml = ♯l[0, r].

Then we have M ↠a fml(Mr) and fml(Mr) ↞b

N , where a ≤ Main(Mr =r
A M) and b ≤

Main(Mr =l
A N).

Proof. From Corollary 3.8 and Proposition 4.3.

We remark that from Lemma 3.4 and Proposition

3.6, the measure function Main is a function in the

fourth level of the Grzegorczyk hierarchy in the case

of λ-calculus [6].

5 Compositional Z-property

We begin with Dehornoy and van Oostrom’s Z

theorem, and then extend it for compositional func-

tions, called the compositional Z. It gives a suffi-

cient condition for that a compositional function

satisfies the Z-property, by dividing a rewriting sys-

tem into two parts.

Definition 5.1 ((Weak) Z-property [15]). Let

(A, → ) be an abstract rewriting system, and ↠
be the reflexive transitive closure of → . Let →x

be another relation on A, and ↠x be its reflexive

transitive closure.

1. A mapping f satisfies the weak Z-property for

→ by →x if M→N implies N ↠x f(M)↠x f(N)

for any M,N ∈ A.

2. A mapping f satisfies the Z-property for → if

it satisfies the weak Z-property by → itself.

When f satisfies the (weak) Z-property, we also

say that f is (weakly) Z.

It becomes clear why we call it the Z-property

when we draw the condition as the following dia-

gram.
M !! N

""
""

f(M) !! !! f(N)

Theorem 5.2 (Z theorem [5]). If there exists a

mapping satisfying the Z-property for an abstract

rewriting system, then it is confluent.

This theorem has been applied to confluence

proofs for some variants of λ-calculus in [5] [13] [1]

[16]. In fact, we can often prove that the usual

complete developments have the Z-property.

The compositional Z is the following, which is

easily proved from Theorem 5.2 with the diagrams

in Figure 1.

Theorem 5.3 (Compositional Z [15]). Let (A, → )

be an abstract rewriting system, and → be →1 ∪
→2 . If there exist mappings f1, f2 : A → A such
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M
1

!! N

1

""""

M
2

!! N

####

f1(M)

$$
$$

1
!! !! f1(N)

f2(f1(M)) !! !! f2(f1(N)) f2(f1(M)) !! !! f2(f1(N))

Figure 1 Proof of Theorem 5.3

that

(a) f1 is Z for →1

(b) M→1 N implies f2(M)↠ f2(N)

(c) M ↠ f2(M) holds for any M ∈ Im(f1)

(d) f2 ◦ f1 is weakly Z for →2 by → ,

then f2 ◦ f1 is Z for (A, → ), and hence (A, → ) is

confluent.

One example of the compositional Z is a conflu-

ence proof for the βη-reduction on the untyped λ-

calculus (although it can be directly proved by the

Z theorem as in [13]). Let →1 = →η , →2 = →β ,

and f1 and f2 be the usual complete developments

of η and β, respectively. Then, it is easy to see

the conditions of the compositional Z hold. The

point is that we can forget the other reduction in

the definition of each complete development.

Furthermore, we have another sufficient condi-

tion for the Z-property of compositional functions

as follows. It is a special case of the compositional

Z where f1(M) = f1(M) holds for any M→1 N .

All of the examples (except for βη above) of the

application of compositional Z in [15] are in this

case.

Corollary 5.4 ( [15]). Let (A, → ) be an abstract

rewriting system, and → be →1 ∪ →2 . Suppose

that there exist mappings f1, f2 : A→ A such that

(a) M→1 N implies f1(M) = f1(N)

(b) M ↠1 f1(M) for any M

(c) M ↠ f2(M) holds for any M ∈ Im(f1)

(d) f2 ◦ f1 is weakly Z for →2 by → .

Then, f2 ◦ f1 is Z for (A, → ), and hence (A, → )

is confluent.

Proof. It is easily proved from Theorem 5.3. The

condition (a) in Theorem 5.3 comes from the new

conditions (a) and (b), and (b) in Theorem 5.3 is

not necessary since we have f2(f1(M)) = f2(f1(N))

for any M→1 N .

Corollary 5.4 can be seen as generalization of the Z-

property modulo, proposed by Accattoli and Kesner

[1]. For an abstract rewriting system (A, → )

and an equivalence relation ∼ on A, the reduc-

tion modulo ∼, denoted M→∼ N , is defined as

M ∼ P → Q ∼ N for some P and Q. The Z-

property modulo says that it is a sufficient condi-

tion for the confluence of →∼ that there exists a

mapping which is well-defined on ∼ and weakly Z

for → by →∼. If we consider ∼ as the first re-

duction relation →1 , and define f1(M) as a fixed

representative of the equivalence class including M ,

then the conditions of the Z-property modulo im-

plies the conditions of the compositional Z, since

the reflexive transitive closure of →∪ ∼ is ↠∼.

6 Quantitative analysis under compo-

sitional Z-property

The two approaches in Sections 4 and 5 are nat-

urally unified into a single framework. For this,

we introduce the compositional Z-property together

with measure functions Mon, Rev and Eval as mod-

ules of bound functions.

Proposition 6.1. Let (A, → ) be an abstract

rewriting system, and → be →1 ∪ →2 . Suppose

that there exist functions f1, f2 : A→ A and mono-
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tonic measure functions Rev1, Rev2, Eval2 and Mon

such that all of the following conditions hold.

1. f1 is Z for →1 :

If M→1 N then N ↠1
a f1(M)↠1 f1(N),

where a ≤ Rev1(|M |).
2. If M→1 N then f2(M)↠ f2(N).

3. M ↠a f2(M) holds for any M ∈ Im(f1),

where a ≤ Eval2(|M |).
4. f2 ◦ f1 is weakly Z for →2 by → :

If M→2 N then N ↠a f2(f1(M))↠ f2(f1(N)),

where a ≤ Rev2(|M |).
5. If M ↠a N then f2(f1(M))↠b f2(f1(N)),

where b ≤ Mon(|M |, a).
Let f = f2 ◦ f1. If M =k

A N with length k =

l + r where r = ♯r[0, k], l = ♯l[0, k] and B =

TermSize(M =k
A N), then we have fr(M) ↞a N

such that a ≤ MainZ(M =k
A N), where MainZ is

defined by induction on k, as follows:

1. MainZ(M ← N) = 1

2. MainZ(M→1 N) = Rev1(|M |)+Eval2(|f1(M)|)
3. MainZ(M→2 N) = Rev2(|M |)
4. MainZ(M =n

A P ← Q) =

MainZ(M =n
A P ) + 1

5. MainZ(M =n
A P →1 Q) =

Mon(B, p) + Eval2(B) + Rev1(B),

where p = MainZ(M =n
A P )

6. MainZ(M =n
A P →2 Q) = Mon(B, p) +

Rev2(B), where p = MainZ(M =n
A P ).

Proof. From the proof of Lemma 3.7 and the fact

that f = f2 ◦ f1 is Z for (A, → ).

Now we have the Church-Rosser theorem under

the assumption of Proposition 6.1.

Theorem 6.2 (Church-Rosser theorem). Let

M =k
A N with reduction sequence [M0,M1, . . . ,Mk]

where r = ♯r[0, k], l = ♯l[0, k] and ml = ♯l[0, r].

Then we have M ↠a fml(Mr) and fml(Mr) ↞b

N , where a ≤ MainZ(Mr =r
A M) and b ≤

MainZ(Mr =l
A N) and f = f2 ◦ f1.

Proof. From Proposition 6.1.

7 Concluding remarks

In this paper, first we investigated directly the

Church-Rosser theorem for β-equality construc-

tively from the viewpoint of Takahashi translation

[22]. Our investigation shows that a common con-

tractum of M and N such that M =β N is deter-

mined by (i) M and the number of occurrences of

reduction (→) appeared in =β , and also by (ii) N

and that of reversed reduction (←). In terms of

iteration of Takahashi translation, this characteri-

zation of the Church-Rosser theorem makes it pos-

sible to analyse how large common contractums are

and how many reduction-steps are required to ob-

tain them. From this, we obtained an upper bound

function for the theorem in the fourth level of the

Grzegorczyk hierarchy.

Next, we demonstrated that the proof method is

available as well under a general framework of the

compositional Z [15]. For this extension, the mea-

sure functions constructed for quantitative analy-

sis of the Church-Rosser theorem are naturally ab-

stracted as fundamental modules of bound func-

tions. This approach makes it possible to analyze

quantitative properties of abstract rewriting sys-

tems under the framework of the compositional Z.

Corollary 5.4 can be seen as generalization of the

Z-property modulo, proposed by [1]. Moreover, it

would be interesting to extend the compositional Z-

property to cooperate with confluent modulo equiv-

alence such as in [10] for applications to practical

problems.
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