
1

日本ソフトウェア科学会第 28 回大会 (2011 年度) 講演論文集

Combinators for Streams

Koji Nakazawa

This paper proposes a new combinatory calculus CLµ
ext , which is an extension of the untyped variant of

the combinatory logic CL with variables and combinators for streams, and which is equivalent to the un-

typed lambda-mu calculus. This paper also proposes a class of models of the untyped lambda-mu calculus,

called extensional stream models, and gives an algebraic characterization for them, which is induced by the

structure of CLµ
ext .

1 Introduction
The λµ-calculus is originally proposed by Parigot

in [3] as a term assignment system for the clas-

sical natural deduction, and some variants of λµ-

calculus have been widely studied as typed calculi

with control operators. Parigot has noted that the

µ-abstraction of the λµ-calculus can be seen as a

potentially-infinite sequence of the λ-abstraction,

and Saurin has shown that the untyped λµ-calculus

can be seen as a stream calculus which enjoys some

fundamental properties such as the separation the-

orem and the standardization theorem [4] [5] [6].

For the λ-calculus, it is well-known that the un-

typed combinatory logic CL with the combinators

K and S corresponds to the untyped λ-calculus, and

CL suggests an algebraic characterization of the λ-

models.

This paper extends this discussion to the untyped

λµ-calculus. The results of this paper are the fol-

lowing: (1) A new combinatory calculus CLµ
ext is

proposed. It is an extension of the extensional vari-

ant of CL, and exactly corresponds to the untyped

λµ-calculus. (2) A class of models, called exten-

sional stream models, for the untyped λµ-calculus

is introduced. It is based on the idea that the µ-

abstractions represent functions on streams. (3)

An algebraic characterization for the extensional

ストリームのための組合せ子
中澤巧爾,京都大学大学院情報学研究科, Graduate School

of Informatics, Kyoto University.

stream models is given. It is induced by the struc-

ture of CLµ
ext , and gives another definition of the

extensional stream models independent of the syn-

tax of the λµ-calculus.

2 Untyped λµ-calculus
First, we remind the untyped λµ-calculus. We

are following the notation of [4], because it is suit-

able to see the λµ-calculus as a calculus for streams.

Definition (λµ-calculus). Suppose that there

are two disjoint sets of variables: one is the set

VarsT of term variables, denoted by x, y, · · · , and

the other is the set VarsS of stream variables, de-

noted by α, β, · · · . Terms and axioms of the λµ-

calculus are given in the Fig. 1. We use the fol-

lowing abbreviations: (i) λx1x2 · · ·xn.M denotes

λx1.(λx2.(· · · (λxn.M) · · ·)) (and similarly for µ),

(ii) (M)A1 · · ·An denotes (· · · ((M)A1) · · ·)An, in

which each Ai denotes either a term or a stream

variable, and the parentheses at the head position

are also often omitted. Variable occurrences of x

and α are bound in λx.M and µα.M , respectively.

Variable occurrences which are not bound are called

free, and FV (M) denotes the set of variables freely

occurring in M .

In the axioms, M [x := N] and M [α :=

β] are usual capture-avoiding substitutions, and

M [(P)α := (P)Nα] recursively replaces any sub-

term of the form (P)α in M by (P)Nα. The rela-

tion M =λµ N is the compatible equivalence rela-

2 日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集

Terms:

M, N ::= x | λx.M | (M)N | µα.M | (M)α

Axioms:

(λx.M)N =βT M [x := N]

(µα.M)β =βS M [α := β]

λx.(M)x =ηT M (x ∈ FV (M))

µα.(M)α =ηS M (α ∈ FV (M))

(µα.M)N =µ µα.M [(P)α := (P)Nα]

Fig. 1 Untyped λµ-calculus

tion defined from the axioms.

In Parigot’s original λµ-calculus [3], the terms

of the form (P)α, which are originally denoted by

[α]P , are distinguished as named terms from the

ordinary terms, and bodies of µ-abstractions are

restricted to the named terms. On the other hand,

we consider (P)α as an ordinary term and any term

can be the body of µ-abstraction. For example,

neither (M)αN nor µα.x is allowed as a term in

the original λµ-calculus, while they are well-formed

terms in our calculus. This calculus is called Λµ-

calculus by Saurin in [4], where another axiom

µα.M →fst λx.µα.M [(P)α := (P)xα]

is chosen instead of (µ) for the reduction system.

For equational systems with (η), the axioms (µ)

and (fst) are equivalent since

(µα.M)N =fst (λx.µα.M [(P)α := (P)xα])N

=βT µα.M [(P)α := (P)Nα]),

and

µα.M =ηT λx.(µα.M)x

=µ λx.µα.M [(P)α := (P)xα].

The untyped λµ-calculus can be seen as a cal-

culus for streams, in which the µ-abstractions

represent functions on stream data, and a term

(M)N0 · · ·Nnα means a function application of M

to the stream data N0 · · ·Nnα, the initial segment

of which is N0 · · ·Nn and the rest is α. For exam-

ple, the term hd = λx.µα.x is the function to get

the head element of streams since

(hd)N0 · · ·Nnβ =βT (µα.N0)N1 · · ·Nnβ

=µ (µα.N0)N2 · · ·Nnβ

· · · =µ (µα.N0)β

=βS N0.

As a little complicated example, we have a term nth

representing the function which takes a stream and

a church numeral cn and returns the n-th element

of the stream. The term nth is defined as

Y (λfx.µα.λy.if (zero? y) then x else fα(y − 1)),

where Y is a fixed point operator in the λ-calculus,

and we have nth N0N1N2 · · ·Nnβ ci =λµ Ni for any

0 ≤ i ≤ n. However, the λµ-calculus has no term

representing a stream, and that means λµ-terms do

not represent any function which returns streams.

3 Combinatory Calculus CLµ
ext

We introduce the new combinatory calculus

CLµ
ext , and show that CLµ

ext is equivalent to the λµ-

calculus.

This result is an extension of the equivalence be-

tween the λ-calculus and the untyped variant of the

ordinary combinatory logic CL with the combina-

tors K and S. In CLµ
ext , the combinators K and S

are denoted by K0 and S0, respectively.

Definition (CLµ
ext). Similarly to the λµ-calculus,

CLµ
ext has two sorts of variables: term variables

VarsT and stream variables VarsS . Constants,

terms, axioms, and extensionality rules (ζ) are

given in Fig. 2. We define FV (T) as the set

of variables occurring in T . We suppose that · and

⋆ are left associative. For example, T1 ·T2⋆α·T3 de-

notes (((T1 ·T2)⋆α) ·T3. For simplicity, we consider

the following auxiliary notion of stream terms

S ::= α | T :: S,

and then the operation ⋆ is extended to the meta-

operation for terms and stream terms by T ⋆ (T ′ ::

S) = (T · T ′) ⋆ S. A stream term S is not a term

of CLµ
ext , but T ⋆ S is always a term. The meta-

variables S1,S2 · · · in the axioms in Fig. 2 denote

stream terms. The substitutions T [x := T ′] and

T [α := S] are defined straightforwardly.

The relation T =CLµ
ext

U is the compatible equiv-

alence relation defined from the axioms and the ex-

日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集 3

Constants:

C ::= K0 | K1 | S0 | S1 | C1,0 | C1,1 | W1

Terms:

T, U ::= C | x | T · U | T ⋆ α

Axioms:

K0 · T1 · T2 = T1 K1 · T1 ⋆ S2 = T1

S0 · T1 · T2 · T3 = T1 · T3 · (T2 · T3) S1 · T1 · T2 ⋆ S3 = T1 ⋆ S3 · (T2 ⋆ S3)

C1,0 · T1 ⋆ S2 · T3 = T1 · T3 ⋆ S2 C1,1 · T1 ⋆ S2 ⋆ S3 = T1 ⋆ S3 ⋆ S2

W1 · T1 ⋆ S2 = T1 ⋆ S1 ⋆ S2

Extensionality rules:
T · x = U · x x ̸∈ FV (T) ∪ FV (U)

T = U
(ζT)

T ⋆ α = U ⋆ α α ̸∈ FV (T) ∪ FV (U)

T = U
(ζS)

Fig. 2 CLµ
ext

tensionality rules.

Intuitively, stream variables and stream terms

denote streams. The new operation ⋆ represents

the function application for streams, which corre-

sponds to the application (M)α in the λµ-calculus.

The correspondence between CLµ
ext and the λµ-

calculus can be formalized as the following trans-

lations, and the two calculi are equivalent through

the translations as Theorem 1.

Definition (Translations between λµ and CLµ
ext).

1. For a CLµ
ext -term T and a term variable x, we

define the CLµ
ext -term λ∗x.T as follows:

λ∗x.x = S0 · S0 · K0

λ∗x.T = K0 · T (x ̸∈ FV (T))

λ∗x.T · U = S0 · (λ∗x.T) · (λ∗x.U)

λ∗x.T ⋆ α = C1,0 · (λ∗x.T) ⋆ α.

For a CLµ
ext -term T and a stream variable α, we

define the CLµ
ext -term µ∗α.T as follows:

µ∗α.T = K1 · T (α ̸∈ FV (T))

µ∗α.T · U = S1 · (µ∗α.T) · (µ∗α.U)

µ∗α.T ⋆ α = W1 · (µ∗α.T)

µ∗α.T ⋆ β = C1,1 · (µ∗α.T) ⋆ β (α ̸= β).

Then the mapping M∗ from λµ-terms to CLµ
ext -

terms is defined by

x∗ = x

(λx.M)∗ = λ∗x.M∗

((M)N)∗ = M∗ · N∗

(µα.M)∗ = µ∗α.M∗

((M)α)∗ = M∗ ⋆ α.

2. The mapping T∗ from CLµ
ext -terms to λµ-terms

is defined by

(K0)∗ = λxy.x

(K1)∗ = λx.µα.x

(S0)∗ = λxyz.xz(yz)

(S1)∗ = λxy.µα.xα(yα)

(C1,0)∗ = λx.µα.λy.xyα

(C1,1)∗ = λx.µαβ.xβα

(W1)∗ = λx.µα.xαα

x∗ = x

(T · U)∗ = (T∗)U∗

(T ⋆ α)∗ = (T∗)α.

Lemma 1. (1) (λ∗x.T) · U =CLµ
ext

T [x := U] and

(µ∗α.T) ⋆ S =CLµ
ext

T [α := S].

(2) T =CLµ
ext

U implies λ∗x.T =CLµ
ext

λ∗x.U and

µ∗α.T =CLµ
ext

µ∗α.U .

(3) M =λµ N implies M∗ =CLµ
ext

N∗.

(4) T =CLµ
ext

U implies T∗ =λµ U∗.

(5) (M∗)∗ =λµ M .

(6) (T∗)
∗ =CLµ

ext
T .

From these lemmas, we can prove that the com-

binatory calculus CLµ
ext is equivalent to the λµ-

calculus in the following sense.

Theorem 1. (1) For any λµ-terms M and N ,

M =λµ N iff M∗ =CLµ
ext

N∗.

(2) For any CLµ
ext -terms T and U , T =CLµ

ext
U iff

T∗ =λµ U∗.

4 Extensional Stream Models
In this section, we introduce a new class of mod-

els, called extensional stream models, for the un-

typed λµ-calculus.

4 日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集

First, we give a definition of the extensional

stream models, straightforwardly following the idea

that the λµ-calculus is a stream calculus. However,

it depends on the definability of the interpretation

of λµ-terms, so we give an algebraic characteriza-

tion of the extensional stream models induced by

the structure of CLµ
ext , which is independent of the

syntax of the λµ-calculus.

4. 1 Definition

Let ω be the set of the natural numbers, and, for

a set D, Dω denotes the set of functions from ω to

D. Each element of Dω can be seen as a stream

over D. In the following, we use λ to represent

meta-level functions, and use the following basic

functions for d ∈ D and s ∈ Dω:

hd(s) = s(0),

tl(s) = λn ∈ ω.s(n + 1),

d :: s = λn ∈ ω.

(
d (n = 0)

s(i) (n = i + 1).

For a function f : D × Dω → D′, λd ::

s ∈ Dω.f(d, s) denotes the function λs ∈
Dω.f(hd(s), tl(s)).

Definition (Extensional stream models). A non-

empty set D is called an extensional stream model

if the following hold.

(1) There exists a subset [Dω → D] of the set of

functions from Dω to D.

(2) There exist two functions Φ : D → [Dω → D]

and Ψ : [Dω → D] → D such that Φ ◦ Ψ =

id [Dω→D] and Ψ ◦ Φ = idD.

(3) The interpretation function [[M]]ρ,θ is induc-

tively well-defined for λµ-terms M , mappings ρ :

VarsT → D, and θ : VarsS → Dω as follows:

[[x]]ρ,θ = ρ(x)

[[λx.M]]ρ,θ = Ψ(λd :: s ∈ Dω.Φ([[M]]ρ[x $→d],θ)(s))

[[(M)N]]ρ,θ = Ψ(λs ∈ Dω.Φ([[M]]ρ,θ)([[N]]ρ,θ :: s))

[[µα.M]]ρ,θ = Ψ(λs ∈ Dω.[[M]]ρ,θ[α$→s])

[[(M)α]]ρ,θ = Φ([[M]]ρ,θ)(θ(α)).

Here, ρ[x)→ d] is defined by

ρ[x)→ d](y) =

(
d (x = y)

ρ(y) (x ̸= y),
and θ[α)→ s] is defined similarly.

The condition (3) requires that each argument of

Ψ is contained in [Dω → D].

Theorem 2. (Soundness) Let D be an arbitrary

stream model with the interpretation function [[·]].
If M =λµ N , then [[M]]ρ,θ = [[N]]ρ,θ for any ρ and

θ.

4. 2 Algebraic Characterization

We give a syntax-free characterization of the ex-

tensional stream models.

Definition (Stream combinatory algebras). (1)

For a non-empty set D, ⟨D; ·, ⋆⟩ is called a stream

applicative structure if · : D × D → D and ⋆ :

D × Dω → D are mappings such that

d1 ⋆ (d2 :: s3) = d1 · d2 ⋆ s3

holds for any d1, d2 ∈ D and s3 ∈ Dω.

(2) A stream applicative structure ⟨D; ·, ⋆⟩ is ex-

tensional if the following holds for any d, d′ ∈ D:

∀s ∈ Dω[d ⋆ s = d′ ⋆ s] implies d = d′.

(3) A stream applicative structure ⟨D; ·, ⋆⟩ is

called a stream combinatory algebra if D contains

distinguished elements k0, k1, s0, s1, c1,0, c1,1, and

w1 such that the following hold for any d1, d2, d3 ∈
D and s2, s3 ∈ Dω.

k0 · d1 · d2 = d1

k1 · d1 ⋆ s2 = d1

s0 · d1 · d2 · d3 = d1 · d3 · (d2 · d3)

s1 · d1 · d2 ⋆ s3 = d1 ⋆ s3 · (d2 ⋆ s3)

c1,0 · d1 ⋆ s2 · d3 = d1 · d3 ⋆ s2

c1,1 · d1 ⋆ s2 ⋆ s3 = d1 ⋆ s3 ⋆ s2

w1 · d1 ⋆ s2 = d1 ⋆ s1 ⋆ s2

A stream applicative structure ⟨D; ·, ⋆⟩ can be

seen as an infinitary algebra with a binary oper-

ator · and an ω-ary operator •, in which ⋆ is de-

fined as d ⋆ (d1, d2 · · ·) = •(d, d1, d2, · · ·). Then,

roughly speaking, the condition for the stream ap-

plicative structure means that • is the extension

of the binary operation · to ω-sequences, that is,

•(d1, d2, d3 · · ·) = d1 · d2 · d3 · · · .
It is clear that any stream combinatory alge-

bra ⟨D; ·, ⋆⟩ is always a combinatory algebra by

ignoring the stream part, that is, ⋆, k1, s1, c1,0,

c1,1, and w1. Moreover, if D is extensional as a

stream applicative structure, then it is extensional

as an applicative structure. Indeed, if we sup-

pose d1 · d = d2 · d for any d ∈ D, then for any

s ∈ Dω we have d1 · d ⋆ s = d2 · d ⋆ s, which means

d1 ⋆(d :: s) = d2 ⋆(d :: s) for any d and s. Hence, by

the extensionality of stream applicative structures,

日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集 5

we have d1 = d2. Therefore, any extensional stream

combinatory algebra is an extensional combinatory

algebra, and hence an extensional λ-model.

Definition (Interpretation of CLµ
ext). Let

⟨D; ·, ⋆⟩ be a stream combinatory algebra. For

CLµ
ext -terms T , mappings ρ : VarsT → D, and

θ : VarsS → Dω, the mapping [T]ρ,θ is defined by:

[C]ρ,θ = c

[x]ρ,θ = ρ(x)

[T · U]ρ,θ = [T]ρ,θ · [U]ρ,θ

[T ⋆ α]ρ,θ = [T]ρ,θ ⋆ θ(α),

where c denotes the element of D corresponding to

the constant C, that is, [K0]ρ,θ = k0, [S0]ρ,θ = s0,

and so on.

Theorem 3. Let ⟨D; ·, ⋆⟩ be an extensional

stream combinatory algebra. If T =CLµ
ext

U , then

[T]ρ,θ = [U]ρ,θ for any ρ and θ.

Theorem 4. For a non-empty set D, the follow-

ing are equivalent.

(1) D is an extensional stream model with some

Φ and Ψ.

(2) D is an extensional combinatory algebra with

some elements k0, k1, s0, s1, c1,0, c1,1, w1 in D, and

some operations · and ⋆.

Proof. ((1)=⇒(2)) Suppose ⟨D; Φ, Ψ⟩ is an ex-

tensional stream model. Define

d ⋆ s = Φ(d)(s)

d · d′ = Ψ(λs ∈ Dω.Φ(d)(d′ :: s)),

where we should note that d · d′ is identical to

[[xy]]ρ[x$→d,y $→d′] and hence it is always defined, and

define

k0 = [[λxy.x]]

k1 = [[λx.µα.x]]

s0 = [[λxyz.xz(yz)]]

s1 = [[λxy.µα.xα(yα)]]

c1,0 = [[λx.µα.λy.xyα]]

c1,1 = [[λx.µαβ.xβα]]

w1 = [[λx.µα.xαα]],

where all the λµ-terms in the right-hand sides con-

tain no free variable, so they are independent of ρ

and θ. Then ⟨D; ·, ⋆⟩ is an extensional stream com-

binatory algebra. Indeed, it is a stream applicative

structure, since

d1 · d2 ⋆ s3 = Φ(Ψ(λs.Φ(d1)(d2 :: s)))(s3)

= Φ(d1)(d2 :: s3)

= d1 ⋆ (d2 :: s3).

((2)=⇒(1)) Suppose ⟨D; ·, ⋆⟩ is an extensional

stream combinatory algebra. Define [Dω → D] :=

{fd | d ∈ D}, where fd is λs ∈ Dω.d ⋆ s, and

Φ(d) = fd Ψ(fd) = d.

Note that Φ and Ψ is well-defined since D is exten-

sional. If fd = fd′ , we have fd(s) = fd′(s) for any

s ∈ Dω, that is, d⋆s = d′ ⋆s. Hence we have d = d′

by the extensionality.

Then the interpretation [[·]] can be defined as

[[M]]ρ,θ = [M∗]ρ,θ. In order to show that, we use

the following lemmas:

[λ∗x.T]ρ,θ · d = [T]ρ[x$→d],θ

[µ∗α.T]ρ,θ ⋆ s = [T]ρ,θ[α$→s].

For example, in the case of M = λx.N , we have

[M∗]ρ,θ ⋆ (d :: s) = [M∗]ρ,θ · d ⋆ s

= [N∗]ρ[x $→d],θ ⋆ s

= [[N]]ρ[x $→d],θ ⋆ s

= Φ([[N]]ρ[x $→d],θ)(s)

for any d and s by the lemma and the induction

hypothesis. Since

λd :: s.[M∗]ρ,θ ⋆ (d :: s) = λs.[M∗]ρ,θ ⋆ s

= f[M∗]ρ,θ
,

we have λd :: s.Φ([[N]]ρ[x$→d],θ)(s) = f[M∗]ρ,θ
, which

is an element of [Dω → D]. Therefore, [[M]]ρ,θ is

defined and identical to Ψ(f[M∗]ρ,θ
) = [M∗]ρ,θ. The

other cases are similarly proved.

Hence, ⟨D; Φ, Ψ⟩ is an extensional stream model.

5 Conclusion
Summary. We have proposed the new combi-

natory calculus CLµ
ext , which exactly corresponds

to the untyped λµ-calculus. Terms of CLµ
ext can be

seen as combinators for both data and streams. We

have also proposed the extensional stream models

of the untyped λµ-calculus, and have shown that

the extensional stream models are algebraically

characterized independently of the syntax of the

λµ-calculus.

In this paper, we formalize CLµ
ext with the seven

constants, but it just means that the seven con-

stants are sufficient. (As noted below, the choice

of the indexed constants is suitable for the general-

ization to the stream hierarchy.) Remind that the

combinators C and W in CL are definable from K

6 日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集

and S. It is an interesting question whether some of

the constants of CLµ
ext are definable from the others.

(Extensional) stream models. We have not

shown any concrete extensional stream model in

this paper, but we can obtain (non-trivial) models

as solutions of the domain equation D ≃ Dω → D

in an appropriate category such as CPOE of em-

beddings on CPOs. Let B be a non-trivial domain,

C be Bω, and D be a solution of D ≃ D → C.

Then we have Cω ≃ Bω×ω ≃ Bω = C, and there-

fore D ≃ D → C ≃ D → Cω ≃ (D → C)ω ≃ Dω.

Hence, we have D ≃ Dω → C ≃ Dω+1 → C ≃
Dω → (D → C) ≃ Dω → D.

In particular, we can construct extensional

stream models in a similar way to Scott’s D∞

[7] [8]. For any CPO D, we can find a stream model

Dµ
∞ into which D can be embedded. However, we

have not understood Dµ
∞ sufficiently: Does Dµ

∞ en-

joy the approximation theorem? Which syntactic

equality corresponds to the equality in Dµ
∞? How

does it related to the Böhm-tree semantics in [6]?

We can also generalize the class of stream mod-

els to non-extensional ones. The definition of the

stream models is the same as the extensional stream

models except for the condition Ψ ◦ Φ = id . In

such stream models, however, the axiom (βT) is

preserved only for the restricted form:

(λx.M)N1 · · ·Nnα =βT M [x := N1] · · ·Nnα.

Hence, if we restrict the λµ-terms to

M ::= x | λx.M | µα.M | (M)M1 · · ·Mnα,

the calculus is sound with respect to the stream

models.

Generalizing to stream hierarchy. Saurin

[5] proposes a further generalization of λµ-calculus,

called the stream hierarchy, in which we can treat

not only streams of data, but also streams of

streams and streams of streams of streams, and so

on. Moreover, Saurin shows that the stream hier-

archy corresponds the call-by-name variant of the

CPS hierarchy.

The stream hierarchy is a collection of calculi

(Λn)n∈ω indexed with natural numbers. In par-

ticular, Λ0 is the ordinary λ-calculus, and Λ1 is

the λµ-calculus. The combinatory calculus CLµ
ext

can also be extended to the stream hierarchy. We

can construct the collection of combinatory cal-

culi (CLn)n∈ω, in which CL0 is the ordinary (un-

typed) combinatory logic, and CL1 is CLµ
ext . In

fact, the calculus CLn is defined with the constants

⟨Ki, Si, Cj,i, Wj | 0 ≤ i ≤ n, 1 ≤ j ≤ n⟩. Note that

this representation includes the cases of CL(= CL0)

and CLµ
ext(= CL1): the set of constants is {K0, S0}

when n = 0, and {K0, K1, S0, S1, C1,0, C1,1, W1}
when n = 1. Moreover, the notion of the ex-

tensional stream models is also extended to Λn

by changing the equality D ≃ [Dω → D] to

D ≃ [Dωn
→ D], and the results in this paper

are generalized to the stream hierarchy.

Models of the untyped λµ-calculus. In [9],

Streicher and Reus proposes the continuation mod-

els for the untyped λµ-calculus, which is based on

the idea that the λµ-calculus is a calculus of contin-

uations. If we see each stream d :: s as a pair ⟨d, s⟩
of an argument d of function and a continuation s,

the interpretation function for the stream models

looks exactly the same as that for the continua-

tion models. The main difference between them is

that the continuation models are only for (a variant

of) the Parigot’s original λµ-calculus, in which the

named terms are distinguished from the ordinary

terms. In the continuation models, ordinary terms

are interpreted as functions from continuations to

responses (i.e. results of computations), whereas

named terms are interpreted as responses. Hence,

for example, a term of the form (M)αN cannot

be interpreted in the continuation models. On the

other hand, in the extensional stream models, both

terms and named terms are uniformly interpreted

in D.

Akama [1] shows that the untyped λµ-calculus

can be interpreted in partial combinatory algebras.

It is based on the idea that µ-abstractions are func-

tions on streams. However, it restricts terms to

affine ones, that is, each bound variable must not

occur more than once.

Fujita [2] considers a reduction system for the

λµ-calculus with (βT), (ηT), (µ), and (fst) rules,

and gives a translation from the λµ-calculus to the

λ-calculus which preserves the equality, and hence

it is shown that any extensional λ-model is a model

of the λµ-calculus. In the translation, each µ-

abstraction is interpreted as a potentially infinite

λ-abstraction by means of a fixed point operator.

However, it considers neither (βS) nor (ηS), and

it seems hard to obtain a similar result for them.

Every extensional stream model is an extensional

λ-model, but it should be further studied how the

extensional stream models relate to the λ-models:

日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集 7

Is there any λ-model which cannot be a stream

model?

Acknowledgments I am grateful to Dana Scott

for helpful comments, and to Shin-ya Katsumata

and Daisuke Kimura for fruitful discussions.

References

[1] Akama, Y. Limiting partial combinatory alge-
bras towards infinitary. In Proceedings of Computer
Science Logic (CSL 2001), volume 2142 of LNCS,
pages 399–414, 2001.

[2] Fujita, K. An interpretation of λµ-calculus in λ-
calculus. Information Processing Letters, 84:261–
264, 2002.

[3] Parigot, M. λµ-calculus: an algorithmic interpre-
tation of classical natural deduction. In Proceedings
of the International Conference on Logic Program-
ming and Automated Reasoning (LPAR ’92), vol-
ume 624 of LNCS, pages 190–201, 1992.

[4] Saurin, A. Separation with streams in the λµ-

calculus. In 20th Annual IEEE Symposium on Logic
in Computer Science (LICS’ 05), pages 356–365,
2005.

[5] Saurin, A. A hierarchy for delimited control in
call-by-name. In 13th International Conference on
Foundations of Software Science and Computation
Structures (FoSSaCS 2010), volume 6014 of LNCS,
pages 374–388, 2010.

[6] Saurin, A. Standardization and böhm trees for
λµ-calculus. In Tenth International Symposium on
Functional and Logic Programming (FLOPS 2010),
volume 6009 of LNCS, pages 134–149, 2010.

[7] Scott, D.S. Continuous lattices. In Toposes, Al-
gebraic Geometry, and Logic, volume 274 of Lecture
Notes in Mathematics, pages 97–136. 1972.

[8] Smyth, M.B. and Plotkin, G.D. The category-
theoretic solution of recursive domain equations.
SIAM Journal on Computation, 11(4):761–783,
1982.

[9] Streicher, T. and Reus, B. Classical logic, contin-
uation semantics and abstract machines. Journal of
Functional Programming, 8(6):543–572, November
1998.

	1EC3C7C9-C005-45F8-95DB-3FB0C4E59D74: On

