Goal

Proving the relative completeness of Incorrectness Separation
Logic [3] with infinitary formulas

- By calculation of weakest postconditions (cf. Reverse Hoare Logic (RHL) [1])

Hoare Logic (HL)

- HL checks "correctness" of programs.
- Hoare Triples: $\{P\} \mathbb{C}\{Q\}$
- For all states s in precondition P if running \mathbb{C} on s terminates in s^{\prime}, then s^{\prime} is in postcondition Q
- post (\mathbb{C}, P) describes states the set of obtained by executing \mathbb{C} on P
- Q over-approximates post (\mathbb{C}, P), i.e., post $(\mathbb{C}, P) \subseteq Q$

Reverse HL \& Incorrectness Logic (IL) [2]

- Viewpoint opposite to HL; checks for "incorrectness"
- Triples: $[P] \mathbb{C}[Q]$
- For all states s^{\prime} in Q, s^{\prime} can be reached by running \mathbb{C} on some s in P
- Q under-approximates post (\mathbb{C}, P), i.e., post $(\mathbb{C}, P) \supseteq Q$

	HL	IL
$(\mathrm{T}) x:=y(x=y)$	\mathbf{V}	\mathbf{V}
$(\mathrm{T}) x:=y(\mathrm{~T})$	\mathbf{V}	\mathbf{X}
$(\mathrm{T}) x:=y(x=y \wedge 0<x<10)$	\mathbf{X}	\mathbf{V}

Incorrectness Separation Logic [3]

- Incorrectness Separation Logic $=$ Reverse HL + Separation Logic
- Moreover, we consider exit statuses (ok = normal end / er = error)
- $x \mapsto y$: Singleton heap
- $x \nrightarrow$: Negative heap (necessary for the "frame rule")
- x has been deallocated
- [x $\mapsto-* x \mapsto-]$ free((x) [emp* $x \mapsto-] \mathbf{X}$
- $[x \mapsto-* x \mapsto-]$ free(x) $[x \nrightarrow-* x \mapsto-] \nabla$
- $P^{*} Q$ (separating conjunction) : P and Q hold for disjoint portions (heaps) \rightarrow modular reasoning
- Heap model
$s: \mathrm{var} \rightarrow$ val (store): representing (dis-) equalities between variables
$h:$ loc $\rightarrow_{\text {fin }}$ val (heap): describing states of heaps
$s, h \vDash P_{1} * P_{2} \Leftrightarrow \exists h_{1}, h_{2} . h=h_{1} \circ h_{2}$ $\wedge s, h_{1} \vDash P_{1} \wedge s, h_{2} \vDash P_{2}$
$s, h \vDash x \mapsto y \Leftrightarrow \operatorname{dom}(h)=\{s(x)\} \wedge h(s(x))=s(y) \neq \perp$
$s, h \vDash x \nLeftarrow \Leftrightarrow \operatorname{dom}(h)=\{s(x)\} \wedge h(s(x))=\perp$
$s, h \vDash x \approx y \Leftrightarrow s(x)=s(y) \wedge \operatorname{dom}(h)=\varnothing$
- Inference rules ($\epsilon \in\{\mathrm{ok}, \mathrm{er}\}$ is an exit status)

$$
\begin{aligned}
& \begin{array}{l}
\text { Cons Reversed with } \mathrm{HL}! \\
\stackrel{p^{\prime}}{\Rightarrow} \stackrel{\vdash}{\vdash} \stackrel{\left.p^{\prime}\right]}{\mathbb{C}}\left[\epsilon: q^{\prime}\right]
\end{array} \quad q \Rightarrow q^{\prime} \\
& \vdash[p] \mathbb{C}[\epsilon: q]
\end{aligned}
$$

Disj
$\frac{\left.\stackrel{\vdash}{ } p_{1}\right] \mathbb{C}\left[\epsilon: q_{1}\right] \quad \vdash\left[p_{2}\right] \mathbb{C}\left[\epsilon: q_{2}\right]}{\vdash\left[p_{1} \vee p_{2}\right] \mathbb{C}\left[\epsilon: q_{1} \vee q_{2}\right]}$

Formulas of ISL with infinite disjunctions

$$
\begin{aligned}
P::= & \bigvee_{i \in I} \exists \vec{x} \cdot \psi_{i} \mid \psi \\
\psi::= & \psi^{*} \psi \\
& \mid \text { emp }|x \mapsto y| x \nrightarrow \\
& |x \approx y| x \nsim y
\end{aligned}
$$

(I may be infinite)
Quantifier-free symbolic heap
Spatial Formulas
Pure Formulas

Relative Completeness of ISL

Theorem: For all $P, \mathbb{C}, \epsilon, Q$, if $[P] \mathbb{C}[\epsilon: Q]$ is true, then
$[P] \mathbb{C}[\epsilon: Q]$ is provable.
(Outline of the proof)

1. Proving Expressiveness by defining weakest postcondition
$\forall \sigma^{\prime} . \sigma^{\prime} \in \mathrm{WPO} \llbracket P, \mathbb{C}, \epsilon \rrbracket \Longleftrightarrow \sigma^{\prime} \vDash \mathrm{wpo}(P, \mathbb{C}, \epsilon)$

- WPO $\llbracket P, \mathbb{C}, \epsilon \rrbracket=\left\{\sigma^{\prime} \mid \exists \sigma . \sigma \vDash P \wedge\left(\sigma, \sigma^{\prime}\right) \in \llbracket \mathbb{C} \rrbracket_{\epsilon}\right\}$
- A set of states satisfying weakest postconditions for P, \mathbb{C} and ϵ

2. Proving that weakest postcondition is always derivable

- For all $P, \mathbb{C}, \epsilon, \vdash[P] \mathbb{C}[\epsilon: \operatorname{wpo}(P, \mathbb{C}, \epsilon)]$

Weakest postconditions

- Case analysis for all pairs of variables $(x=y$ or $x \neq y)$
- Every formula can be tranlstated to the form:

$$
\bigvee_{i \in I} \exists \vec{x} \cdot \psi_{i}
$$

(ψ_{i} is a finite symbolic heap for each case, i.e.,
$\forall i \in I, \forall y, z \in \operatorname{fv}\left(\psi_{i}\right) \cup \mathrm{fv}(\mathbb{C}) . y \approx z \vDash \psi_{i}$ or $\left.y \not \approx z \vDash \psi_{i}\right)$

- Definition of wpo $(P, \mathbb{C}, \epsilon)$
- $\operatorname{wpo}(P, \mathbb{C}, \epsilon)=\bigvee_{i \in I} \exists \vec{x} \cdot \mathrm{wpo}_{\mathrm{sh}}\left(\psi_{i}, \mathbb{C}, \epsilon\right)$

$$
\text { (P is equivalent to } \left.\bigvee_{i \in I} \exists \vec{x} \cdot \psi_{i}\right)
$$

- Definition of $\mathrm{wpo}_{\mathrm{sh}}(\psi, \mathbb{C}, \epsilon)$ for (qf-)symbolic heaps ψ
- $\operatorname{wpo}_{\mathrm{sh}}\left(\mu^{\prime} * x \approx y * y \mapsto e\right.$, free($\left.(\mathrm{x}), \mathrm{ok}\right)=\psi^{\prime *} x \approx y * y \nrightarrow$
- $\operatorname{wpo}_{\text {sh }}(\psi$, free (x), ok $)=$ false

Case 1:
x is a fresh address
(otherwise)
Case 2: x was once

- $\operatorname{wpo}_{\mathrm{sh}}(\psi, x:=\operatorname{alloc}(), \mathrm{ok})=$
$\exists x^{\prime} .\left(\psi\left[x:=x^{\prime}\right] * x \mapsto-\right) \vee$
allocated ($\mathrm{x} \nmid$)
$\vee_{j=1}^{n}\left(\left(*_{i=1}^{n} y_{i} \not \leftrightarrow\right)\left[y_{j} \nLeftarrow:=y_{j} \mapsto-\right] * x \approx y_{j} * \psi^{\prime}\left[x:=x^{\prime}\right]\right)$
$\left(\psi=\left(*_{i=1}^{n} y_{i} \nrightarrow\right) * \psi^{\prime}\right.$ s.t. ψ^{\prime} does not contain $\left.\nrightarrow\right)$
- $\mathrm{wpo}_{\mathrm{sh}}(\psi, x:=$ alloc(), er) $=$ false
- $\operatorname{wpo}_{\mathrm{sh}}\left(\psi, \mathbb{C}_{1} ; \mathbb{C}_{2}\right.$, ok $)=\operatorname{wpo}\left(\right.$ wpo $_{\text {sh }}\left(\psi, \mathbb{C}_{1}\right.$, ok $), \mathbb{C}_{2}$, ok $)$
- $\operatorname{wpo}_{\text {sh }}\left(\psi, \mathbb{C}_{1} ; \mathbb{C}_{2}\right.$, er $)=$
wpo $_{\text {sh }}\left(\psi, \mathbb{C}_{1}\right.$, er $) \vee \operatorname{wpo}\left(\right.$ wpo $_{\text {sh }}\left(\psi, \mathbb{C}_{1}\right.$, ok $), \mathbb{C}_{2}$, er $)$
- $\mathrm{wpo}_{\mathrm{sh}}\left(\psi, \mathbb{C}^{\star}, \mathrm{ok}\right)=\bigvee_{n \in \mathbb{N}} \Upsilon(n)$

$$
(\Upsilon(0)=\psi \text { and } \Upsilon(n+1)=\operatorname{wpo}(\Upsilon(n), \mathbb{C}, o k))
$$

References

[1] De Vries, E., Koutavas, V.: Reverse hoare logic. SEFM 2011, 155-171.
[2] O'Hearn, P.W.: Incorrectness logic. POPL 2019, 1-32.
[3] Raad, A., Berdine, J., Dang, H.H., Dreyer, D., O'Hearn, P., Villard, J.: Local reasoning about the presence of bugs: Incorrectness separation logic. CAV 2020, 225-252.

