On Cut-elimination in Cyclic Proof Systems

Introduction

- Cyclic proof mechanism is a natural reasoning framework of inductive
definitions. The framework plays important role in both logic and CS.
- However fundamental properties such as cut-elimination and completeness for
cyclic proof systems are not well-known
- This work shows that cut-elimination fails in a cyclic proof system of very
simple setting of separation logic

Simple Separation Logic SL $_{0}$

- Variables: $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \ldots$
- Inductive Predicates: $\quad \boldsymbol{P}_{1}\left(\overrightarrow{x_{1}}\right), \ldots, P_{n}\left(\overrightarrow{x_{n}}\right)$
- Formulas:
$\boldsymbol{F}, \boldsymbol{G}::=\boldsymbol{x} \mapsto \boldsymbol{y} \quad$ Points-to predicates
$\mid \boldsymbol{P}(\overrightarrow{\boldsymbol{x}}) \quad$ Ind. predicate
| $\boldsymbol{F} * \boldsymbol{G} \quad$ Separating conjunction
- Definition of Ind.Pred.: $\quad P(\vec{x}):=F_{P, 1} 1\left(\vec{x}, \overrightarrow{z_{1}}\right)|\ldots| F_{P, k}\left(\vec{x}, \overrightarrow{z_{k}}\right)$
$\overrightarrow{z_{j}}$ are implicitly existentially quantified
- Entailments: $\boldsymbol{F} \vdash \Delta \quad$ where $\Delta=G_{1}, \ldots, G_{n}$ (multiset)

Examples

$\begin{array}{lll}l s(x, y):=x \mapsto y \mid x \mapsto z * l s(z, y) & & \text { non-empty sll } \\ s l(x, y):=x \mapsto y \mid s l(x, z) * z \mapsto y & & \text { non-empty sll-rev }\end{array}$

Semantics

- Stores: $s:$ Vars $\rightarrow \mathbb{N}$
- Heaps: $h: \mathbb{N} \backslash\{0\} \longrightarrow_{\text {fin }} \mathbb{N}$
- Heap model: (s, h)
$s, \boldsymbol{h} \models x \mapsto y \stackrel{\text { def }}{\Longleftrightarrow} \operatorname{Dom}(\boldsymbol{h})=\{s(x)\} \& h(s(x))=s(y)$
$s, h \models F_{1} * F_{2} \stackrel{\text { def }}{\Longleftrightarrow} \exists h_{1}, h_{2} .\left(s, h_{1} \models F_{1} \& s, h_{2} \models F_{2} \& h=h_{1}+h_{2}\right)$
$s, h \models P^{(0)}(\vec{y}) \stackrel{\text { def }}{\Longleftrightarrow}$ Never
$s, h \models P^{(k+1)}(\vec{y}) \stackrel{\text { def }}{\Longleftrightarrow} \exists \vec{a}, j . s[\vec{z}:=\vec{a}], h \models F_{P, j}\left[\vec{P}^{(k)} / \vec{P}\right](\vec{y}, \vec{z})$
$s, h \models P(\vec{y}) \stackrel{\text { def }}{\Longleftrightarrow} \exists k . s, h \models P^{(k)}(\vec{y})$
$s, h \models \Delta \stackrel{\text { def }}{\Longleftrightarrow} \exists G \in \Delta . s, h \models G$
$\boldsymbol{F} \vdash \boldsymbol{\Delta}$ is valid $($ written $\boldsymbol{F} \models \boldsymbol{\Delta}) \stackrel{\text { def }}{\Longleftrightarrow} \forall s, \boldsymbol{h} .(s, \boldsymbol{h} \models \boldsymbol{F}$ implies $s, \boldsymbol{h} \models \boldsymbol{\Delta})$

Derivation rules of CSL_{0}^{M} ID ω

Inference Rules

$$
\begin{gathered}
\overline{\boldsymbol{F} \vdash \boldsymbol{F}}(\mathrm{Id}) \quad \frac{\boldsymbol{F} \vdash \Delta}{\boldsymbol{F} \vdash \Delta, \boldsymbol{G}}(\mathrm{Wk}) \quad \frac{\boldsymbol{F} \vdash \Delta, \boldsymbol{G}, \boldsymbol{G}}{\boldsymbol{F} \vdash \Delta, \boldsymbol{G}}(\mathrm{Ctr}) \\
\frac{\boldsymbol{F}_{1} \vdash \Delta_{1} \quad \boldsymbol{F}_{2} \vdash \Delta_{2}}{\boldsymbol{F}_{1} * \boldsymbol{F}_{2} \vdash \Delta_{1} * \Delta_{2}}(*) \text { where } \Delta_{1} * \Delta_{2}=\left\{G_{1} * G_{2} \mid G_{1} \in \Delta_{1} \text { and } G_{2} \in \Delta_{2}\right\} \\
\frac{\boldsymbol{F \vdash \Delta _ { 1 } , \boldsymbol { H } \quad \boldsymbol { H } \vdash \Delta _ { 2 }}}{\boldsymbol{F} \vdash \Delta_{1}, \Delta_{2}}(\mathrm{Cut}) \quad \frac{G \vdash \Delta, H * \boldsymbol{F}_{P, j}(\vec{y}, \vec{w})}{\boldsymbol{G} \vdash \Delta, \boldsymbol{H} * P(\vec{y})}(\mathrm{UR}) \\
\frac{G * \boldsymbol{F}_{P, 1}\left(\vec{y}, \overrightarrow{z_{1}}\right) \vdash \Delta \quad \ldots \boldsymbol{G} * \boldsymbol{F}_{P, m}\left(\vec{y}, \overrightarrow{z_{m}}\right) \vdash \Delta}{G * \boldsymbol{P}(\vec{y}) \vdash \Delta}(\mathrm{UL}) \vec{z} \text { are fresh }
\end{gathered}
$$

Example: (UL) and (UR) rules for $l \boldsymbol{s}$

$$
\begin{gather*}
\frac{\boldsymbol{F} \vdash G * x \mapsto y}{F \vdash G * l s(x, y)}(\mathrm{UR}) \quad \frac{\boldsymbol{F} \vdash G * x \mapsto z * l s(z, y)}{\boldsymbol{F} \vdash G * l s(x, y)}(\mathrm{UR}) \\
\frac{F * x \mapsto y \vdash G \quad F * x \mapsto z * l s(z, y) \vdash G}{F * l s(x, y) \vdash G}(\mathrm{UL}) \tag{UL}
\end{gather*}
$$

Cyclic proofs in $\mathrm{CSL}_{0}^{M} \mathrm{ID} \omega$

(Brotherston-style) cyclic proof

$$
\begin{aligned}
& x \mapsto y * y \mapsto z \vdash x \mapsto y * y \mapsto z \quad x \mapsto y \vdash x \mapsto y \quad y \mapsto w * l s(w, z) \vdash l s(y, z) \\
& \overline{x \mapsto y * y \mapsto z \vdash x \mapsto y * l s(y, z)} \quad \bar{x} \mapsto y * y \mapsto w * l s(w, z) \vdash \overline{x \mapsto y} \mapsto l s(y, z) \\
& x \mapsto y * y \mapsto z \vdash l s(x, z) \quad x \mapsto y * y \mapsto w * \underline{l s(w, z)} \vdash l s(x, z) \\
& \text { Companion } x \mapsto y * l s(y, z) \vdash l s(x, z) \\
& \text { (UL) }
\end{aligned}
$$

Preproof: derivation tree with bud-companion link
Proof graph: graph structure of preproof
Trace: a sequence of ind.preds. following a path of a proof graph (underlined $l \boldsymbol{s}$) Global trace condition: every inf.path contains a trace that passes inf.many (UL) Cyclic proof: preproof which satisfies the global trace condition

Theorem (Soundness)
 \section*{Every entailment in a cyclic}

Proposition

(1) $\boldsymbol{x} \mapsto \boldsymbol{z} * \operatorname{sl}(\boldsymbol{z}, \boldsymbol{y}) \vdash \operatorname{sl}(\boldsymbol{x}, \boldsymbol{y})$ is provable
(2) $l s(x, y) \vdash s l(x, y)$ is provable in CSL_{0}^{M} ID $\boldsymbol{\omega}$ using (Cut)
(1)

$\overline{x \mapsto z \vdash x \mapsto z} \quad \underline{l s(z, y) \vdash s l(z, y)}$
(2)

Key idea

Connected Ls-form of (x, y) :

$z_{0} \mapsto z_{1} * \cdots * z_{m-1} \mapsto z_{m} * l s\left(z_{m}, y\right)$
where $\boldsymbol{x}=\boldsymbol{z}_{0} \& \vec{z}, \boldsymbol{y}$ are distinguished

- Partially conn.Ls-form of (x, y) :
a formula obtained by removing some $z_{i} \mapsto z_{i+1}$ from a conn.Ls-form
- Connected SI-form of $(\boldsymbol{x}, \boldsymbol{y})$:
$s l\left(x, v_{m}\right) * v_{m} \mapsto v_{m-1} * \cdots * v_{1} \mapsto v_{0}$, where $v_{0}=y$
- Partially conn.SI-form of (x, y) :
a formula obtained by removing some $\boldsymbol{v}_{\boldsymbol{i}+\boldsymbol{1}} \mapsto \boldsymbol{v}_{\boldsymbol{i}}$ from a conn.Sl-form
- Δ is SI-form:

For any $G \in \Delta, G$ is a partially conn.Sl-form of $(\boldsymbol{x}, \boldsymbol{y})$ or $\boldsymbol{*}_{j} \boldsymbol{z}_{j} \mapsto \boldsymbol{w}_{j}$

- $\boldsymbol{F} \vdash \boldsymbol{\Delta}$ is in L-form of $(\boldsymbol{x}, \boldsymbol{y})$
$\stackrel{\text { def }}{\Longleftrightarrow} \boldsymbol{F}$ is in partially conn.Ls-form of $(\boldsymbol{x}, \boldsymbol{y})$ and $\boldsymbol{\Delta}$ is in SI-form of $(\boldsymbol{x}, \boldsymbol{y})$

Lemma1

Assume that $\boldsymbol{F} \vdash \Delta$ is a valid L-form of $(\boldsymbol{x}, \boldsymbol{y})$. Then
(1) \boldsymbol{F} is a connected Ls-form of $(\boldsymbol{x}, \boldsymbol{y})$
(2) Δ contains $\operatorname{sl}(x, y)$

Lemma2

Let entailment \boldsymbol{e} be a L-form of $(\boldsymbol{x}, \boldsymbol{y})$.
Suppose that \boldsymbol{e} appears in a cut-free cyclic proof as the conclusion of a rule \boldsymbol{r}.
Then $r \neq(*)$ and r has a unique assump. which is a L-form of $(\boldsymbol{x}, \boldsymbol{y})$

Main Theorem

$l s(x, y) \vdash s l(x, y)$ is not cut-free provable in $\mathrm{CSL}_{0}^{M} \mathrm{ID} \omega$
Proof. Assume $\mathrm{e}_{0}=l s(x, y) \vdash s l(x, y)$ has a cut-free cyclic proof.

- e_{0} is a valid L-form of (x, y) by soundness.
- By Lemma2, a sequence $\mathbf{e}_{0}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{\mathbf{N}}$ of valid L-forms can be taken
- By Lemma1, $\mathbf{e}_{\mathbf{N}}$ cannot be an axiom. Hence \mathbf{e}_{N} is a bud
- Some e_{k} is the companion of e_{N} since every L-form appears in the sequence
- There is a (UL) between \mathbf{e}_{k} and $\mathbf{e}_{\mathbf{N}}$
since the inf.path $\mathbf{e}_{\mathrm{k}} \rightarrow^{*} \mathbf{e}_{\mathrm{N}} \rightarrow \mathbf{e}_{\mathrm{k}} \rightarrow^{*} \cdots$ contains a trace that passes inf.many (UL) by g.t.c.
- Define $\sharp\left(\mathrm{e}_{\mathbf{i}}\right)$ by the number of \mapsto in the antecedent of $\mathrm{e}_{\mathbf{i}}$
- $\sharp\left(\mathrm{e}_{\mathrm{k}}\right) \leq \sharp\left(\mathrm{e}_{\mathrm{m}}\right)<\sharp\left(\mathrm{e}_{\mathrm{m}+1}\right) \leq \sharp\left(\mathrm{e}_{\mathrm{N}}\right)=\sharp\left(\mathrm{e}_{\mathrm{k}}\right)$
- Contradiction!
$\mathrm{e}_{\mathrm{N}}: F_{N} \vdash \Delta_{N}$
$\mathrm{e}_{\mathrm{m}+1}: * z_{i} \mapsto z_{i+1} * z \mapsto z^{\prime} * \underline{l s\left(z^{\prime}, y\right)} \vdash \Delta_{m}$ $\mathrm{e}_{\mathrm{m}}: * z_{i} \mapsto z_{i+1} * \underline{l s(z, y)} \vdash \Delta_{m}$
$\mathrm{e}_{\mathrm{k}}: \boldsymbol{F}_{\boldsymbol{k}} \vdash \boldsymbol{\Delta}_{\boldsymbol{k}}$

$$
\mathrm{e}_{1}: \dot{F_{1}} \vdash \Delta_{1}
$$

$\mathrm{e}_{0}: l s(x, z) \vdash s l(x, y)$

Corollary (Failure of Cut-Elimination in $\mathrm{CSL}_{0}^{M} \mathrm{ID} \omega$)

The cut-elimination property fails in $\mathrm{CSL}_{0}^{M} \mathrm{ID} \boldsymbol{\omega}$

Future work

- Applying this proof technique to other cyclic proof systems
- logic of bunched implications (Brotherston, 2007)
- first-order logic (Brotherston, PhD thesis)
- Reconstructing positive results on cut-elimination
- Reasonable restrictions on inductive predicates
- Cut-elimination except cut rules against buds

