On Cut-elimination in Cyclic Proof Systems

Daisuke Kimura (Toho U.), Koji Nakazawa (Nagoya U.), Tachio Terauchi (Waseda U.), Hiroshi Unno (Tsukuba U.) kmr@is.sci.toho-u.ac.jp knak@is.nagoya-u.ac.jp terauchi@waseda.jp uhiro@cs.tsukuba.ac.jp

Introduction

- Cyclic proof mechanism is a natural reasoning framework of inductive definitions. The framework plays important role in both logic and CS.
- However fundamental properties such as cut-elimination and completeness for cyclic proof systems are not well-known
- This work shows that cut-elimination fails in a cyclic proof system of very simple setting of separation logic

Simple Separation Logic SL_0

- ullet Variables: x,y,z,\ldots
- ullet Inductive Predicates: $P_1(ec{x_1}), \ldots, P_n(ec{x_n})$
- Formulas:

$$F,G::=x\mapsto y$$
 Points-to predicates $|P(\vec{x})|$ Ind. predicate $|F*G|$ Separating conjunction

- Definition of Ind.Pred.: $P(\vec{x}) := F_{P,1} 1(\vec{x}, \vec{z_1}) \mid \ldots \mid F_{P,k}(\vec{x}, \vec{z_k})$ $\vec{z_j}$ are implicitly existentially quantified
- ullet Entailments: $F dash \Delta$ where $\Delta = G_1, \ldots, G_n$ (multiset)

Examples

$$egin{aligned} & m{ls}(m{x},m{y}) := x \mapsto y \mid x \mapsto z * ls(m{z},m{y}) & & ext{non-empty sll-rev} \ & sm{l}(m{x},m{y}) := x \mapsto y \mid sm{l}(m{x},m{z}) * m{z} \mapsto y & & ext{non-empty sll-rev} \end{aligned}$$

Semantics

- ullet Stores: $s: \mathsf{Vars} o \mathbb{N}$
- ullet Heaps: $h: \mathbb{N}\setminus\{0\}\longrightarrow_{\mathrm{fin}}\mathbb{N}$
- Heap model: (s,h)

$$s, h \models x \mapsto y \stackrel{\text{def}}{\Longleftrightarrow} \text{Dom}(h) = \{s(x)\} \& h(s(x)) = s(y)$$

$$s,h \models F_1 * F_2 \stackrel{\text{def}}{\Longleftrightarrow} \exists h_1,h_2.(\ s,h_1 \models F_1 \&\ s,h_2 \models F_2 \&\ h = h_1 + h_2)$$

$$s, h \models P^{(0)}(\vec{y}) \stackrel{\text{def}}{\iff} \text{Never}$$

$$oldsymbol{s,h} \models P^{(k+1)}(ec{oldsymbol{y}}) \stackrel{ ext{def}}{\Longleftrightarrow} \exists ec{a},j. \ s[ec{z}:=ec{a}], h \models F_{P,j} \ [ec{P}^{(k)}/ec{P}](ec{y},ec{z})$$

$$oldsymbol{s,h} \models oldsymbol{P}(oldsymbol{ec{y}}) \stackrel{ ext{def}}{\Longleftrightarrow} \exists k.\ s,h \models oldsymbol{P}^{(k)}(oldsymbol{ec{y}})$$

$$oldsymbol{s,h} \models \Delta \stackrel{ ext{def}}{\Longleftrightarrow} \exists G \in \Delta.s, h \models G$$

$$F \vdash \Delta$$
 is valid (written $F \models \Delta$) $\stackrel{\mathrm{def}}{\Longleftrightarrow} \forall s, h.(s, h \models F \text{ implies } s, h \models \Delta)$

Derivation rules of $ext{CSL}_0^M ext{ID} oldsymbol{\omega}$

Inference Rules

$$rac{F dash \Delta}{F dash F} (\mathrm{Id}) \qquad rac{F dash \Delta}{F dash \Delta, G} (\mathrm{Wk}) \qquad rac{F dash \Delta, G, G}{F dash \Delta, G} (\mathrm{Ctr})$$

$$rac{F_1dash\Delta_1\quad F_2dash\Delta_2}{F_1*F_2dash\Delta_1*\Delta_2}(*)$$
 where $\Delta_1*\Delta_2=\{G_1*G_2\mid G_1\in\Delta_1 ext{ and } G_2\in\Delta_2\}$

$$\frac{F \vdash \Delta_1, H \quad H \vdash \Delta_2}{F \vdash \Delta_1, \Delta_2} \text{(Cut)} \qquad \frac{G \vdash \Delta, H * F_{P,j}(\vec{y}, \vec{w})}{G \vdash \Delta, H * P(\vec{y})} \text{(UR)}$$

$$\frac{G*F_{P,1}(\vec{y},\vec{z_1})\vdash\Delta \dots G*F_{P,m}(\vec{y},\vec{z_m})\vdash\Delta}{G*P(\vec{y})\vdash\Delta} \text{(UL) } \vec{z} \text{ are fresh}$$

Example: (UL) and (UR) rules for \emph{ls}

$$\frac{F \vdash G * x \mapsto y}{F \vdash G * ls(x,y)} \text{(UR)} \qquad \frac{F \vdash G * x \mapsto z * ls(z,y)}{F \vdash G * ls(x,y)} \text{(UR)}$$
$$\frac{F * x \mapsto y \vdash G \quad F * x \mapsto z * ls(z,y) \vdash G}{F * ls(x,y) \vdash G} \text{(UL)}$$

Cyclic proofs in $ext{CSL}_0^M ext{ID} \omega$

(Brotherston-style) cyclic proof

Preproof: derivation tree with bud-companion link

Proof graph: graph structure of preproof

Trace: a sequence of ind.preds. following a path of a proof graph (underlined ls) Global trace condition: every inf.path contains a trace that passes inf.many (UL) Cyclic proof: preproof which satisfies the global trace condition

Theorem (Soundness)

Every entailment in a cyclic proof is valid

- Proposition
- $(1) \ x \mapsto z * sl(z,y) \vdash sl(x,y)$ is provable
- (2) $ls(x,y) \vdash sl(x,y)$ is provable in $CSL_0^M ID\omega$ using (Cut)

(1)
$$\frac{x \mapsto z * \underline{sl(z,w)} \vdash sl(x,w)}{x \mapsto y \vdash sl(x,y)} \text{(UR)} \frac{x \mapsto z * \underline{sl(z,w)} * w \mapsto y \vdash sl(x,w) * w \mapsto y}{x \mapsto z * \underline{sl(z,w)} * w \mapsto y \vdash sl(x,y)} \text{(UR)}$$
$$x \mapsto z * \underline{sl(z,y)} \vdash \underline{sl(x,y)} \text{(UL)}$$

(2)
$$\frac{\overline{x \mapsto y \vdash x \mapsto y}}{x \mapsto y \vdash sl(x,y)} \xrightarrow{\overline{x \mapsto z \vdash x \mapsto z}} \underbrace{\frac{ls(z,y) \vdash sl(z,y)}{x \mapsto z * sl(z,y)}}_{x \mapsto z * \underline{ls(z,y)} \vdash sl(x,y)} \xrightarrow{x \mapsto z * \underline{ls(z,y)} \vdash sl(x,y)}_{(Cut)} (Cut)$$

$$\frac{ls(x,y) \vdash sl(x,y)}{}_{(Cut)} = \underbrace{\frac{ls(x,y) \vdash sl(x,y)}{x \mapsto z * \underline{ls(x,y)}}}_{(Cut)} = \underbrace{\frac{ls(x,y) \vdash sl(x,y)}{x \mapsto z * \underline{ls(x,y)}}}_{(UL)} = \underbrace{\frac{ls(x,y) \vdash sl(x,y)}}_{(UL)} = \underbrace{\frac{ls(x,y) \vdash sl(x,y)}{x \mapsto z * \underline{ls(x,y)}}}_$$

Key idea

- ullet Connected Ls-form of (x,y):
- $z_0\mapsto z_1*\cdots*z_{m-1}\mapsto z_m*ls(z_m,y),$ where $x=z_0\ \&\ ec z,y$ are distinguished
- Partially conn.Ls-form of (x,y):
 - a formula obtained by removing some $z_i \mapsto z_{i+1}$ from a conn.Ls-form
- - $sl(x,v_m)*v_m\mapsto v_{m-1}*\cdots*v_1\mapsto v_0$, where $v_0=y$
- ullet Partially conn.SI-form of (x,y):
 - a formula obtained by removing some $v_{i+1}\mapsto v_i$ from a conn.SI-form
- Δ is **SI-form**:
 - For any $G \in \Delta$, G is a partially conn.SI-form of (x,y) or igspace* igspace*
- ullet $F dash \Delta$ is in **L-form** of (x,y) $\Longleftrightarrow F$ is in partially conn.Ls-form of (x,y) and Δ is in SI-form of (x,y)

Lemma1

Assume that $F \vdash \Delta$ is a valid L-form of (x, y). Then

- (1) $m{F}$ is a connected Ls-form of (x,y)
- (2) Δ contains sl(x,y)

Lemma2

Let entailment e be a L-form of (x, y).

Suppose that e appears in a cut-free cyclic proof as the conclusion of a rule r. Then $r \neq (*)$ and r has a unique assump. which is a L-form of (x, y)

Main Theorem

 $ls(x,y) \vdash sl(x,y)$ is not cut-free provable in $CSL_0^M ID\omega$.

Proof. Assume $e_0 = ls(x, y) \vdash sl(x, y)$ has a cut-free cyclic proof.

- ullet \mathbf{e}_0 is a valid L-form of $(\boldsymbol{x}, \boldsymbol{y})$ by soundness.
- ullet By Lemma2, a sequence $\mathbf{e_0}, \mathbf{e_1}, \dots, \mathbf{e_N}$ of valid L-forms can be taken
- \bullet By Lemma1, e_N cannot be an axiom. Hence e_N is a bud
- \bullet Some e_k is the companion of e_N since every L-form appears in the sequence
- There is a (UL) between e_k and e_N since the inf.path $e_k \to^* e_N \to e_k \to^* \cdots$ contains a trace that passes inf.many (UL) by g.t.c.
- ullet Define $\sharp(e_i)$ by the number of \mapsto in the antecedent of e_i
- $\bullet \ \sharp(e_k) \leq \sharp(e_m) < \sharp(e_{m+1}) \leq \sharp(e_N) = \sharp(e_k)$
- Contradiction!

$$\begin{array}{c} \mathbf{e_N}: F_N \vdash \Delta_N \\ \vdots \\ \mathbf{e_{m+1}}: \bigstar z_i \mapsto z_{i+1} * z \mapsto z' * \underline{ls(z',y)} \vdash \Delta_m \\ \hline \mathbf{e_m}: \bigstar z_i \mapsto z_{i+1} * \underline{ls(z,y)} \vdash \Delta_m \\ \vdots \\ \hline \mathbf{e_k}: F_k \vdash \Delta_k \\ \vdots \\ \mathbf{e_1}: F_1 \vdash \Delta_1 \\ \hline \mathbf{e_0}: ls(x,z) \vdash sl(x,y) \end{array} \tag{UL}$$

Corollary (Failure of Cut-Elimination in $\mathrm{CSL}_0^M\mathrm{ID}\omega$)

The cut-elimination property fails in $\mathrm{CSL}_0^M\mathrm{ID}\omega$

Future work

- Applying this proof technique to other cyclic proof systems
 - logic of bunched implications (Brotherston, 2007)
 - first-order logic (Brotherston, PhD thesis)
- Reconstructing positive results on cut-elimination
 - Reasonable restrictions on inductive predicates
 - Cut-elimination except cut rules against buds