
Cyclic Theorem Prover for Separation Logic by
Magic Wand

Koji Nakazawa1, Makoto Tatsuta2, Daisuke Kimura3, and Mitsuru Yamamura1

1 Nagoya University, Japan, {knak, yamamura326}@sqlab.jp
2 National Institute of Informatics / Sokendai, Japan, tatsuta@nii.ac.jp

3 Toho University, Japan, kmr@is.sci.toho-u.ac.jp

Abstract. We propose the strong wand and the Factor rule in a cyclic-
proof system for the separation-logic entailment checking problem with
general inductive predicates. The strong wand is similar to but stronger
than the magic wand and is defined syntactically. The Factor rule, which
uses the strong wand, is an inference rule for spatial factorization to ex-
pose an implicitly allocated cell in inductive predicates. By this rule, we
can void getting stuck in the Unfold-Match-Remove strategy. We show
a semi-decision algorithm of proof search in the cyclic-proof system with
the Factor rule and the experimental results of its prototype implemen-
tation.

1 Introduction

Separation logic [10, 2, 3] is a logical system for the verification of programs
operating heap memories, and it is used as an assertion language of the Hoare
logic. One of the keys of automated verification systems based on the separation
logic is to decide the validity for entailments of symbolic heaps.

Inductive definitions are important for symbolic heaps, since recursive struc-
tures such as lists and trees are described by inductive definitions. The inductive
definitions without any restriction cause undecidability [1]. The paper [8] pro-
posed the system SLRDbtw, which is the first decidable system for entailment
of symbolic heaps with general form of inductive definitions. We call the con-
ditions imposed by [8] the bounded treewidth condition for restricting the class
of inductive definitions. The bounded treewidth condition is one of the most
flexible conditions for a decidable system.

We propose cone inductive definitions. Its condition is stricter than the
bounded treewidth condition, namely, its class is smaller than that by the bounded
treewidth condition. However we can expect a more efficient proof-search proce-
dure for cone inductive definitions. Moreover our class of inductive definitions is
still quite large, since our class contains doubly-linked lists, skip lists, nested lists,
and so on. The cone inductive definition requires that every definition clause of
the inductive predicate P (x, x1, x2) contains x 7→ (u). We call the first argument
x a root of P (x, x1, x2), since it is the root of a tree-like structure described by
this predicate.

2 K. Nakazawa et al.

Cyclic proofs [4, 5] give efficient semi-decision procedure for the entailment
checking problem. In a cyclic-proof system, the induction is represented as a
cyclic structure, where some open assumptions are allowed as buds, which play
a role of the induction hypothesis. This mechanism gives us more efficient proof
search, since we need not fix an induction formula in advance.

Combining Unfold-and-Match proof strategy [7] to cone inductive definitions
and cyclic proofs, we obtain the following strategy. First, unfold the atomic
formulas of the same root x in both antecedent and succedent. Next, the ex-
istentials of the antecedent are replaced by fresh variables and instantiate the
existentials of the succedent by matching. Finally, remove the same x 7→ (u) in
both antecedent and succedent. We repeat these steps for each subgoal. We call
this strategy Unfold-Match-Remove and write U-M-R for it. This idea is natural
and seems to work well. However we will have to add more ideas to make this
procedure a real algorithm.

In this paper we will propose as a precise procedure as possible. We believe
the procedure that we will propose is complete under the condition that every
definition clause is linear (namely it has at most one atomic spatial formula ex-
cept the atomic formula for the root). For this purpose, we extend the succedent
to disjunctions. By this, we can unfold ⊢ P (x) to ⊢ A,B where A and B are the
definition clauses of P (x) keeping validity. We also introduce predicates t ↓ and
t ↑ which mean that t is in the heap and t is not in the heap respectively. By
this, we can analyze cases by ↓ or not.

Then the U-M-R procedure will have a problem, since it may get stuck when
any common root does not exist in antecedent and the disjuncts of succedent.
To solve this problem, in this paper, we give a new idea, the strong wand and
the Factor rule.

Let us consider the following inductive predicate as a motivating example.

lsa(x, y, z) =def x = z ∧ x 7→ (y)

∨ ∃w.x = z ∧ x 7→ (w) ∗ lsa(w, y, w)
∨ ∃w.x 7→ (w) ∗ lsa(w, y, z).

lsa(x, y, z) means a (possibly cyclic) list from x to y such that z is allocated in
it. Hence, the entailment

lsa(x, x, y) ⊢ lsa(y, y, x)

is valid, since both sides represent a circular list that contains x and y. However,
in a naive version of U-M-R, we cannot find common roots on both sides which
we start to unfold. In general it is hard to find such a circular list during proof
search. In fact, the existing system based on the cyclic-proof system, Cyclist [5],
fails to find the proof of this entailment.

In order to solve this problem, we propose a strong variant of the magic
wand, called the strong wand. As the magic wands, the strong wands represent
the difference of two heaps. The strong wand Q—∗sP represents a subheap
of P which is obtained by removing a heap of Q. It is done syntactically in

Cyclic Theorem Prover for Separation Logic by Magic Wand 3

an unfolding tree of P . The point is that the strong wand is not a new logical
connective, but Q—∗sP is introduced as a new inductive predicate. For example,
the definition clauses of lsa(x′, y′, z′)—∗slsa(x, y, z) are given as follows.

lsa(x′, y′, z′)—∗slsa(x, y, z) =def y
′ = y ∧ z′ = x′ ∧ x = z ∧ x 7→ (x′)

∨ y′ = y ∧ z′ = z ∧ x 7→ (x′)

∨ ∃w.x = z ∧ x 7→ (w) ∗ (lsa(x′, y′, z′)—∗slsa(w, y, w))
∨ ∃w.x 7→ (w) ∗ (lsa(x′, y′, z′)—∗slsa(w, y, z)).

By using the strong wand, we introduce an inference rule, called the Factor
rule, by which we can factorize the spatial predicate and expose a predicate
representing the corresponding subheap.

The Factor rule enables us to find the same root on both sides as follows.
Suppose that a heap model (s, h) satisfies P (x) and contains a cell named with y.
Furthermore, suppose that the definition of the predicate P recursively depends
on P itself and another predicate Q. Then, by the shape of definition clauses,
some subheap of h satisfies either P (y) or Q(y). Hence P (x) can be factored into
either P (y) (orQ(y)) and the rest R1 (or R2) of it as P (x) ⇔ R1∗P (y)∨R2∗Q(y).
The strong wands enable us to represent these R1 and R2 as P (y)—∗sP (x)
and Q(y)—∗sP (x) respectively, so we can consider the following instance of the
Factor rule

A ⊢ (P (y)—∗sP (x)) ∗ P (y), (Q(y)—∗sP (x)) ∗Q(y)

A ⊢ P (x)
(Factor)

,

by which we can expose the cell named with y in the succedent of the premise.
For the above example of lsa, the rule instance of Factor is

lsa(x, x, y) ⊢ ∃y′z′.(lsa(x, y′, z′)—∗slsa(y, y, x)) ∗ lsa(x, y′, z′)
lsa(x, x, y) ⊢ lsa(y, y, x)

(Factor)
,

and we can find the corresponding cell named with x in lsa(x, y′, z′).
In this paper, we propose the strong wand and the Factor rule, and show

the soundness of the Factor rule. We also propose a semi-decision procedure
for cyclic-proof search, and give a prototype prover based on it to confirm the
usefulness of the spatial factorization.

We give the language for our system in Section 2. The strong wand and the
Factor rule are introduced in Section 3, the proof-search procedure with the
Factor rule is introduced in Section 4, and some experimental results are given
in Section 5. We conclude in Section 6.

2 Symbolic Heaps with Inductive Definitions

This section defines the symbolic heaps which we consider in our proof system.
We will use vector notation −→x to denote a sequence x1, . . . , xk for simplicity.

Sometimes we will also use this notation to denote a set for simplicity. We write
≡ for the syntactical equivalence.

4 K. Nakazawa et al.

2.1 Language

The language of our system is based on that for the ordinary symbolic heaps in
separation logic with inductively defined predicates. We consider only address
values and no arithmetic on them. We have countably many first-order variables
x, y, z, . . . and inductive predicate symbols P,Q,R, We use P to denote either
an inductive predicate or the point-to predicate 7→. If P is 7→, we write P(t,

−→
t)

for t 7→ −→
t .

Definition 1 (Base language). The base language is given as follows.
The terms are defined as t, u, · · · ::= nil | x, where nil is a first-order constant.
The pure formulas, the spatial formulas, the symbolic heaps, and the entail-

ments are defined as follows.

Π,Π ′ ::= t = u | t ̸= u | Π ∧Π ′ (pure formula),

Σ ::= emp | P(t,
−→
t) ∗Σ (spatial formula),

ϕ ::= ∃−→z .Π ∧Σ (symbolic heap).

Here we fix the length of
−→
t in t 7→ −→

t to Nc. The term t in P(t,
−→
t) is called

a root. We will sometimes write P(t) or P for P(t,
−→
t). For sets S and S′ of

terms, we define

(̸= (S, S′)) ={t ̸= t′ | t ∈ S, t′ ∈ S′, t ̸≡ t′}, (̸= S) =(̸= (S, S)).

For I = {1, · · · , n}, we write ∗i∈IPi(ti,
−→
t i) for P1(t1,

−→
t 1) ∗ · · · ∗ Pn(tn,

−→
t n).

We sometimes omit the index set I as ∗iPi(ti,
−→
t i).

An inductive definition system is a finite set of the inductive definitions of
the form

P (x,−→y) =def

∨
i∈I

ϕi(x,
−→y) (inductive definition),

where the definition clauses must be of the form

ϕi(x,
−→y) ≡ ∃−→z .Π ∧ x 7→ (−→u) ∗ ∗j∈JPj(zj ,

−→
t j) (definition clause),

and satisfy the following conditions.

−→z = {zj | j ∈ J} (strong connectivity),
−→z ⊆ −→u (decisiveness).

We write ϕ⇒ P (x,−→y) if ϕ is a definition clause of P (x,−→y).

We call the inductive definition under these conditions cone inductive def-
inition. The strong connectivity implies the bounded treewidth condition. The
decisiveness guarantees that the cell at address x decides the content of every
existential variable. It is similar to the constructively valued condition in [6].

Cyclic Theorem Prover for Separation Logic by Magic Wand 5

2.2 Extended Language

For case analysis in the proof search, we extend the language with the auxiliary
predicates x ↑ and x ↓, which intuitively mean “x is not allocated” and “x is
allocated”, respectively. For a finite set X of variables, we write X ↑ and X ↓
for

∧
{x ↑ | x ∈ X} and

∧
{x ↓ | x ∈ X}, respectively.

Definition 2 (Extended language). We extend the spatial formulas of the
base language as follows.

∆ ::= P(t,
−→
t) ∧X ↓ (extended spatial atom),

Γ ::= emp | ∆ ∗ Γ (extended spatial formula).

The entailments are of the form Y ↑ ∧Π ∧ Γ ⊢
−→
ϕ . We use ψ to denote an

antecedent of an entailment.

For saving space, we identify some syntactical objects that have the same
meaning, namely, we use implicit transformation of formulas by using the follow-
ing properties: ∧ is commutative, associative, and idempotent; ∗ is commutative,
associative, and has the unit emp; = and ̸= are symmetric.

For the case analysis on ↓, we define the following.

Definition 3. We define ⇓ (Γ,X) and ⇓ (ψ,X) as follows.

⇓ (∗i∈I∆i, X) ={∗i∈I(∆i ∧Xi ↓) | X =
∑

i∈I Xi},
⇓ (Y ↑ ∧Π ∧ Γ,X) ={Y ↑ ∧Π ∧ Γ ′ | Γ ′ ∈ ⇓ (Γ,X)},

where
∑

i∈I Xi means the disjoint union of {Xi | i ∈ I}.

Definition 4 (Roots). We define Roots as follows.

Roots(X ↓ ∧P(t,−→u)) = {t}, Roots(∗i∆i) = ∪iRoots(∆i),

Roots(Y ↑ ∧Π ∧ Γ) = Roots(Γ),

Roots(∃x.ϕ) = Roots(ϕ)− {x}.

2.3 Semantics

We define the following structure: Val = N , Locs = {x ∈ N |x > 0}, Heaps =
Locs →fin ValNc , Stores = Vars → Val. Each s ∈ Stores is called a store.
Each h ∈ Heaps is called a heap, and Dom(h) is the domain of h. We write
h = h1 + h2 when Dom(h1) and Dom(h2) are disjoint and the graph of h is the
union of those of h1 and h2. A pair (s, h) is called a heap model, which means
the current memory state. The value s(x) means the value of the variable x
in the model (s, h), and it is naturally extend to the domain Vars ∪ {nil} as
s(nil) = 0. Each value a ∈ Dom(h) means an address, and the value of h(a) is
in the memory cell of address a in the model (s, h). We suppose each memory
cell has Nc elements as its content.

6 K. Nakazawa et al.

*⇔

P(y)

Q
x

Q(x)

Q(x) P(y)−*
s

y y

x

Fig. 1. Strong wand

For a formula F we define the interpretation s, h |= F as follows.
s, h |= t1 = t2 if s(t1) = s(t2),
s, h |= t1 ̸= t2 if s(t1) ̸= s(t2),
s, h |= F1 ∧ F2 if s, h |= F1 and s, h |= F2,
s, h |= emp if Dom(h) = ∅,
s, h |= t 7→ (t1, . . . , tNc

) if Dom(h) = {s(t)} and h(s(t)) = (s(t1), . . . , s(tNc
)),

s, h |= F1 ∗ F2 if s, h1 |= F1 and s, h2 |= F2 for some h1 + h2 = h,

s, h |= P 0(
−→
t) does not hold,

s, h |= P k+1(
−→
t) if s, h |= ϕ[P := P k] for some definition clause ϕ of P (

−→
t),

s, h |= P (
−→
t) if s, h |= Pm(

−→
t) for some m,

s, h |= ∃z.F if s[z := b], h |= F for some b ∈ N ,
s, h |= x ↑ if s(x) ̸∈ Dom(h),
s, h |= x ↓ if s(x) ∈ Dom(h),

ψ |=
−→
ϕ if ∀sh(s, h |= ψ implies s, h |= ϕi for some ϕi ∈

−→
ϕ).

The entailment ψ ⊢
−→
ϕ is said to be valid if ψ |=

−→
ϕ holds.

3 Strong wand and spatial factorization

In this section, we will define the strong wands, by which we give an inference
rule called Factor rule for the spatial factorization.

Under the conditions on the inductive definition, a heap model satisfying a
predicate and an unfolding tree of the predicate are naturally corresponding,
since any cell in a heap of P corresponds to the root of some predicate Q oc-
curring in an unfolding tree of P . Therefore, if a heap model (s, h) satisfies P
and a cell with the name x is allocated in h, that is, if s, h |= P ∧ x ↓, then
s(x) is a root of a subheap h′ ⊆ h satisfying some Q in the unfolding tree of P .
The point is that the difference h − h′ can be also represented by an inductive
predicate R, whose inductive definition is obtained removing the occurrence of Q
from the definition clauses of P . We call this R the strong wand Q—∗sP . Then,
s, h |= P ∧ x ↓ iff s, h |= (Q(x)—∗sP) ∗ Q(x) for some predicate Q which can
occur in an unfolding tree of P (as Figure 1). By this property, we can factorize
a predicate, and expose the cell named with x.

Cyclic Theorem Prover for Separation Logic by Magic Wand 7

3.1 Strong wand

We define the strong wand Q—∗sP for inductive predicates P and Q where the
definition of P recursively depends on Q. The strong wand is not introduced
as a logical connective, but as an additional inductive predicate. Q(y)—∗sP (x)
plays a similar role to the ordinary magic wand Q(y)—∗P (x), but it is stronger
than the ordinary one and it is defined syntactically.

We write Pr for the set of the original predicate symbols, and Pr is extended
with strong wands Q—∗sP , where Q ∈ Pr and P may be another strong wand. In
the following, P,Q, · · · denote predicate symbols extended by the strong wand.

When the arities of P and Q are nP and nQ, respectively, the arity of Q—∗sP
is nP +nQ. We write Q(v,−→w)—∗sP (x,−→y) for (Q—∗sP)(x,−→y , v,−→w), so the root
of Q(v,−→w)—∗sP (x,−→y) is x.

Definition 5. The set Dep(P) of predicate symbols in Pr for P ∈ Pr is the least
set satisfying the following: (i) If Q ∈ Pr occurs in some definition clause of P ,
then Q ∈ Dep(P). (ii) If P1 ∈ Dep(P2) and P2 ∈ Dep(P3), then P1 ∈ Dep(P3).

We extend the domain of Dep with the strong wand by Dep(Q—∗sP) =
Dep(P).

Definition 6. For Q ∈ Dep(P), the definition clauses of Q(v,−→w)—∗sP (x,−→y)
are as follows.

(1) For each ∃−→z .Π ∧ x 7→ (−→u) ∗Q(zQ,
−→
t Q) ∗Σ ⇒ P (x,−→y), we add

∃(−→z − zQ).(
−→w =

−→
t Q ∧Π ∧ x 7→ (−→u) ∗Σ)[zQ := v].

to the definition clauses of Q(v,−→w)—∗sP (x,−→y).
(2) For each ∃−→z .Π ∧ x 7→ (−→u) ∗ ∗l∈LPl(zl,

−→
t l) ⇒ P (x,−→y) and l ∈ L such

that Q ∈ Dep(Pl), we add

∃−→z .Π ∧ x 7→ (−→u) ∗ (Q(v,−→w)—∗sPi(zi,
−→
t i)) ∗ ∗l ̸=i,l∈LPl(zl,

−→
t l).

to the definition clauses of Q(v,−→w)—∗sP (x,−→y).
If the definition clause contains two or more Q’s, then we have one definition

clause of the form in (1) for each occurrence of Q.

Note that these definition clauses satisfy the conditions imposed on definition
clauses in our language.

Example 1. For the list segment

ls(x, y) =def x 7→ y ∨ ∃z.x 7→ (z) ∗ ls(z, y),

the strong wand ls—∗sls is defined by the following clauses.

ls(v, w)—∗sls(x, y) =defw = y ∧ x 7→ (v)

∨∃z.x 7→ (z) ∗ (ls(v, w)—∗sls(z, y)).

8 K. Nakazawa et al.

Example 2. For the doubly-linked list

dll(h, p, n, t) =def h = t ∧ h 7→ (p, n) ∨ ∃z.h 7→ (p, z) ∗ dll(z, h, n, t),

the strong wand dll—∗sdll is defined by the following clauses.

dll(h′, p′, n′, t′)—∗sdll(h, p, n, t) =defp
′ = h ∧ n′ = n ∧ t′ = t ∧ h 7→ (p, h′)

∨∃z.h 7→ (p, z) ∗ (dll(h′, p′, n′, t′)—∗sdll(z, h, n, t)).

We write Q1, . . . , Qm—∗sP for Q1—∗s . . .—∗sQm—∗sP . We also use the no-

tation
−→
Q—∗sP . If

−→
Q is empty,

−→
Q—∗sP denotes P . Intuitively,Q1, . . . , Qm—∗sP

represents a heap obtained by removing subheaps satisfying Q1, . . . , Qm from a
heap satisfying P .

By the following lemma, the order of predicates in
−→
Q does not change the

definition of
−→
Q—∗sP . For simplicity of notation, the arity of every predicate is

suppose to be two.

Lemma 1. The definition clauses of
−−−−→
R(v, u)—∗sP (x, z) are

∃(w1i)i∈I .(Π∧
∧−−−−−→u2 = s2∧x 7→ (

−→
t)∗∗i∈I(

−−−−−−−−→
R1i(v1i, u1i)—∗sQ1i(w1i, s1i)))[

−→w 2 := −→v 2]

for each clause ∃−→w .Π ∧ x 7→ (
−→
t) ∗

−−−−−→
Q(w, s) ⇒ P (x, z), and divisions (with

permutations)

−−−−→
R(v, u) = (

−−−−−−−−→
R1i(v1i, u1i))i∈I ,

−−−−−−−→
R2(v2, u2),

−−−−−→
Q(w, s) = (Q1i(w1i, s1i))i∈I ,

−−−−−−−→
Q2(w2, s2)

such that
−→
R 2 =

−→
Q2, where each

−→
R 1i can be empty.

Hence, if
−→
R ′ is a permutation of

−→
R , then

−→
R ′—∗sP is equivalent to

−→
R—∗sP .

Proof. By induction on the length of
−→
R . The detailed proof is in [13]. 2

The strong wand is stronger than the magic wand, that is, P—∗sQ |= P—∗Q
holds.

The properties of the strong wand are given as the following lemmas, which
are depicted as Figure 2. These are generalization of the following.

(Q(y, w)—∗sP (x, z)) ∗Q(y, w) |=P (x, z),
x ̸= y ∧ y ↓ ∧P (x, z) |={∃w.(Q(y, w)—∗sP (x, z)) ∗Q(y, w) | Q ∈ Dep(P)}.

The first property, called the strong-wand elimination, means that, by combining
two heaps satisfying Q(y)—∗sP (x) and Q(y) we obtain the heap satisfying P (x)
in the same way as the ordinary magic wand. The second property, called the
strong-wand introduction, means that, if a heap satisfies P (x) and contains the
cell named with y, the heap can be factorized into two parts Q(y)—∗sP (x) and
Q(y). Since we want as a precise proof-search procedure as possible, we consider

Cyclic Theorem Prover for Separation Logic by Magic Wand 9

* ⊨

P

Q

…
R1 Rn

Q

P

Q

…
R1 Rn

Q P−*
s

R Q−*
s→

R P−*
s→

Strong-wand elimination (Lemma 2)

⊨

P

y

R1 R2

P

Q

R1

Q

R2

*

y・ ・

(for some Q)

R1,R2 P−*
s→→

Q,R1 P−*
s→

R2 Q−*
s→

Strong-wand introduction (Lemma 3)

Fig. 2. Strong-wand elimination and introduction

the disjunction of all possibilities of Q ∈ Dep(P). Note that, for Q ̸∈ Dep(P),
the strong wand Q—∗sP always means false, so we do not have to consider this
case.

In the following, we do not consider the order in sequences for divisions such

as
−→
R =

−→
R 1,

−→
R 2.

Lemma 2 (Strong-wand elimination). We have

(Q(y, w)—∗sP (x, z)) ∗ (
−−−−→
R(v, u)—∗sQ(y, w)) |=

−−−−→
R(v, u)—∗sP (x, z).

Proof. We prove s, h |= LHS implies s, h |= RHS by induction on the size of h.
The detailed proof is in [13]. 2

Lemma 3 (Strong-wand introduction). We have

x ̸= y ∧ y ↓ ∧(
−−−−→
R(v, u)—∗sP (x, z)) |=

{∃w.(Q(y, w),
−−−−−−−→
R1(v1, u1)—∗sP (x, z)) ∗ (

−−−−−−−→
R2(v2, u2)—∗sQ(y, w)) |

−→
R =

−→
R 1,

−→
R 2, Q ∈ Dep(P),

−→
R 2 ⊆ Dep(Q)}.

Proof. We prove s, h |= LHS implies s, h |= RHS by induction on the size of h.
The detailed proof is in [13]. 2

10 K. Nakazawa et al.

Let P be
−→
R′—∗sP in Lemma 2, we have

(Q,
−→
R′—∗sP) ∗ (

−→
R—∗sQ) |=

−→
R,

−→
R′—∗sP (x, z).

3.2 Spatial factorization

The factor rule is the following.

ψ ⊢
−→
ϕ ,Fact(ϕ, y)

ψ ⊢
−→
ϕ , ϕ

(Factor)
,

where the auxiliary functions are defined as

Factaux(
−−−−−→
R(u,−→u)—∗sP (t,−→t), y) = {∃−→w .(

−−−−−−−−→
R1(u1,

−→u 1), Q(y,−→w)—∗sP (t,−→t)) ∗ (
−−−−−−−−→
R1(u2,

−→u 2)—∗sQ(y,−→w)) |
−−−−−→
R(u,−→u) =

−−−−−−−−→
R1(u1,

−→u 1),
−−−−−−−−→
R2(u2,

−→u 2) is a division, Q ∈ Dep(P),
−→
R 2 ⊆ Dep(Q), −→w fresh},

Fact(∃−→v .Π ∧ ∗j∈JPj , y) = {∃−→v −→w .Π ∧ (∗j∈J−{i}Pj) ∗Σ |
i ∈ J , Pi is not 7→, Σ ∈ Factaux(Pi, y).}

In particular, for P ∈ Pr, we define

Factaux(P (t,
−→
t), y) = {∃−→w .(Q(y,−→w)—∗sP (t,−→t))∗Q(y,−→w) | Q ∈ Dep(P), −→w fresh}.

Proposition 1 (Soundness of Factor). If ψ |=
−→
ϕ ,Fact(ϕ, y), then ψ |=

−→
ϕ , ϕ.

Proof. Suppose s, h |= ψ, and, by the assumption, we have s, h |=
−→
ϕ ,Fact(ϕ, y).

In the case of s, h |=
−→
ϕ , it is trivial that s, h |=

−→
ϕ , ϕ. Otherwise, we have s, h |=

Fact(ϕ, y). Then, ϕ ≡ ∃−→v .Π∧Σ∗(
−→
R—∗sP) and s, h |= ∃−→v −→w .Π∧Σ∗Σ′ for some

∃−→w .Σ′ ≡ ∃−→w .(
−→
R 1, Q(y,−→w)—∗sP) ∗ (

−→
R 2—∗sQ(y,−→w)) ∈ Factaux(

−→
R—∗sP, y),

where −→w ̸∈ FV (Π ∧ Σ ∗ (
−→
R—∗sP)). By the definition, there exist −→a and

−→
b ∈ N such that s[−→w := −→a ,−→v :=

−→
b], h |= Π ∧ Σ ∗ (

−→
R 1, Q(y,−→w)—∗sP) ∗

(
−→
R 2—∗sQ(y,−→w)). Let s′ be s[−→w := −→a ,−→v :=

−→
b]. We have h1 + h2 = h

such that s′, h1 |= Σ and s′, h2 |= (
−→
R 1, Q(y,−→w)—∗sP) ∗ (

−→
R 2—∗sQ(y,−→w)). By

Lemma 2, we have s′, h2 |=
−→
R 1,

−→
R 2—∗sP , where

−→
R 1,

−→
R 2 ≡

−→
R . Hence, we have

s′, h |= Π ∧Σ ∗ (
−→
R—∗sP). Therefore, s, h |= ϕ holds. 2

4 Inference rules and proof search

In this section, we introduce the proof-search procedure with the Factor rule.

Cyclic Theorem Prover for Separation Logic by Magic Wand 11

(Π ′ contains only x ̸= t for some x ∈ −→x)

emp ⊢ ∃−→x .Π ′ ∧ emp,
−→
ϕ

(emp)
(ψ unsat)

ψ ⊢
−→
ϕ

(Unsat)

x ↑ ∧ψ ⊢
−→
ϕ ψ′ ⊢

−→
ϕ (∀ψ′ ∈⇓ (ψ, x))

ψ ⊢
−→
ϕ

(Case ↑↓)
t = t′ ∧ ψ ⊢

−→
ϕ t ̸= t′ ∧ ψ ⊢

−→
ϕ

ψ ⊢
−→
ϕ

(CaseEq)

ψ[x := t] ⊢
−→
ϕ [x := t]

x = t ∧ ψ ⊢
−→
ϕ

(= L)
ψ ⊢

−→
ϕ

x ↑ ∧ψ ⊢
−→
ϕ

(∧L↑)
ψ ∗ Γ ⊢

−→
ϕ

ψ ∗ (Γ ∧ x ↓) ⊢
−→
ϕ

(∧L↓)
ψ ⊢

−→
ϕ

Π ∧ ψ ⊢
−→
ϕ

(∧Lp)

ψ ⊢
−→
ϕ

ψ ⊢
−→
ϕ , ϕ

(∨R)
ψ ⊢

−→
ϕ , ϕ[w := t]

ψ ⊢
−→
ϕ , ∃w.ϕ

(∃R)
t ̸= t′ ∧ ψ ⊢

−→
ϕ , ϕ

t ̸= t′ ∧ ψ ⊢
−→
ϕ , t ̸= t′ ∧ ϕ

(∧R)
ψ ⊢

−→
ϕ , ϕ

ψ ⊢
−→
ϕ , t = t ∧ ϕ

(TrivR)

ψ ⊢
−→
ϕ (θ is a substitution)

ψθ ⊢
−→
ϕ θ

(Subst)
ψ ⊢

−→
ϕ ,Fact(ϕ, y)

ψ ⊢
−→
ϕ , ϕ

(Factor)

Π ′ ∧ ψ ∗ x 7→ (
−→
t) ∗ Γ ′ ⊢

−→
ϕ (∀Γ ′ ∈ ∪{⇓ (Σ′, X) | ∃−→z .Π ′ ∧ x 7→ (

−→
t) ∗Σ′ ⇒ P (x), −→z is fresh})

ψ ∗ (P (x) ∧X ↓) ⊢
−→
ϕ

(Pred L)

ψ ⊢
−→
ϕ , {∃−→v −→z .Π ∧Π ′ ∧Σ ∗Σ′] | ∃−→z .Π ′ ∧Σ′ ⇒ P (x,

−→
t)}

ψ ⊢
−→
ϕ , ∃−→v .Π ∧Σ ∗ P (x,

−→
t)

(Pred R)

ψ ∗ x 7→ (−→u) ⊢
−→
ϕ , ∃−→z .Π ∧ −→u = −→v ∧Σ ∗ x 7→ (−→v)

ψ ∗ x 7→ (−→u) ⊢
−→
ϕ , ∃−→z .Π ∧Σ ∗ x 7→ (−→v)

(7→=)

x ↑ ∧ψ ⊢ (∃zi.Πi ∧Σi)i

ψ ∗ x 7→ (−→u) ⊢ (∃zi.Πi ∧Σi ∗ x 7→ (−→u))i
(∗ 7→)

The definition of ⇓ in (Case↑↓) and (PredL) is given in Definition 3. The definition of
Fact in (Factor) is given in Section 3.2.

Fig. 3. Inference Rules

4.1 Inference rules

The inference rules are summarized in Figure 3. Note that the SAT check for
the extended language is decidable [13].

Proposition 2. Every inference rule in Figure 3 is sound.

Proof. The soundness of (emp) is proved as follows. Let J be X ↑ ∧Π ∧ emp ⊢
∃−→x .Π ′ ∧ emp. Suppose (s, h) satisfies the antecedent. Since N is an infinite set,
there exist −→a ̸∈ s(FV (J)) such that the elements in −→a are mutually distinct.
Then, we have s[−→x := −→a], h |= Π ′, since Π ′ contains only x ̸= t such that
x ∈ −→x .

The soundness of (Case↑↓) follows from that x ↑ ∨x ↓ always holds. The
soundness of (Factor) is proved in Proposition 1. The other rules are proved in
a straightforward way. 2

A proof in our proof system is a proof structure constructed with the inference
rules with cycles formed by a bud-companion relation satisfying the global trace
condition [4], such that the proof system is sound.

12 K. Nakazawa et al.

Theorem 1. The proof system is sound, that is, if ψ ⊢
−→
ϕ holds, then we have

ψ |=
−→
ϕ .

Proof. It is proved by the soundness of the inference rules and the condition on
the cyclic structure. 2

4.2 Initialization for proof search

In this and the next sections, we describe our proof-search procedure, which is
an Unfold-Match-Remove procedure. Note that we have no split rule such as

Π ∧ Γ1 ⊢ Π ′ ∧Σ1 Π ∧ Γ2 ⊢ Π ′ ∧Σ2

Π ∧ Γ1 ∗ Γ2 ⊢ Π ′ ∧Σ1 ∗Σ2
(∗)

similarly to the proof systems in [7, 11, 12]. If we impose the condition that every

definition clause has at most one atomic spatial formula except x 7→ (
−→
t) for the

root x, we believe that our procedure will be complete. On the other hand, if
we do not have such an additional condition, we have to consider a split rule
for completeness and decidability. Such a split rule for entailments with multiple
conclusions which is locally complete is challenging, and it is proposed in [13].

For the input entailment, apply the following steps 1–6, and then repeat the
main loop given in the next section. If the all subgoals finish in the termination
check (step 5) or the cycle check (step 12), the procedure stops and answers
VALID. If one of subgoals stops with FAIL in the termination check (step 5) or
the succedent of one of the subgoals becomes empty by the rule (∨R) at the step
4.4 or 6.1, the procedure stops and answers FAIL.

1. [Case analysis ↑ / ↓] Repeat (Case↑↓) to make cases with respect to
x ↑ and x ↓ for each free variable x of the entailment. Then, we obtain a set of
subgoal entailments.

2. [Case analysis = / ̸=] For each subgoal J , repeat (CaseEq) to make
cases with respect to t = t′ and t ̸= t′ for all pairs of elements in FV (J) ∪ {nil}
except for t ≡ t′. Then, we obtain a set of subgoal entailments.

3. [Unsat check] For each subgoal, if the antecedent is unsatisfiable, finish
this case by applying (Unsat).

4. [Pure check] For each subgoal J , do the following 4.1–4.4.
4.1. Repeat (= L) until the antecedent contains no =, and then the pure part

in the antecedent becomes the set of t ̸= t′ for every pair of FV (J) ∪ {nil}.
4.2. For every ∃x.x = t∧Π∧Σ in the succedent, replace it to (Π∧Σ)[x := t]

by (∃R).
4.3. Repeat (∧R), (TrivR) until these rules cannot be applied.
4.4. Remove all disjuncts containing t = t′ such that t ̸≡ t′ by repeating

(∨R). Then, the pure parts in the succedent contain only x ̸= t′ such that x is
bound by ∃.

5. [Termination check] If the spatial part of the antecedent is emp, do the
following 5.1. Otherwise, go to the step 6.

Cyclic Theorem Prover for Separation Logic by Magic Wand 13

5.1. If there is a disjunct whose spatial part is emp, finish this case by applying
(∧L↓), (∧Lp), and (emp). Otherwise, stop with FAIL.

6. [Normalization] For each subgoal J , do the following 6.1–6.2.
6.1. Remove all disjuncts containing two or more spatial atoms with the same

root by repeating (∨R).
6.2. Remove all x ̸= t and x ↑ in the antecedent such that x does not occur

in the spatial part of the antecedent or the succedent by repeating (∧Lp) and
(∧L↑). Remove all x ↓ in Γ ∧ x ↓ such that Roots(Γ) = {x} by (∧L↓).

4.3 Main loop for proof search

In this section, we define the main loop of our procedure.
We keep the set of entailments that we have already processed as a subgoal.

We call it the history and we use it for companions in the cyclic proof.

After the initialization, we obtain a set of subgoal entailments
−→
J . Repeat to

apply the following steps 7–12 to the subgoals
−→
J .

7. [Common root] For each subgoal ψ ⊢ (ϕi)i, check the set Roots(ψ) ∩
(∩iRoots(ϕi)). If this set is not empty, choose x in this set, and go to the step
9. Otherwise, choose x ∈ Roots(ψ), and do the step 8.

8. [Spatial factorization] For all disjuncts ϕ such that x ̸∈ Roots(ϕ), apply
(Factor). Then, x is in Roots of all disjuncts.

9. [Unfolding] Apply (PredL) to the predicate with the root x in the an-
tecedent, and then we obtain several subgoals. For each subgoal, apply (PredR)
to all of the predicates with the root x in the disjuncts in the succedent to
generate new disjuncts.

10. [Matching] For each subgoal, do the following 10.1–10.2.
10.1. Repeat (= L), (7→=), (∃ =), and (TrivR) until they cannot be applied.

Then, all of x 7→ (−→u) in the disjuncts are identical to the x 7→ (−→u ′) in the
antecedent.

10.2. Apply (7→ ∗).
11. Do the steps 2–6 of the initialization.
12. [Cycle check] For each subgoal J do the following. If J is obtained by

substitution from an entailment in the history, finish this case. Otherwise, add
J to the history and continue the main loop with the subgoal J .

4.4 Examples of proof search

We give two examples to see how the procedure works.

Example 3. The first example is on the following simple predicates.

two(x, y) =def∃z.y = z ∧ x 7→ (z) ∗ to(z, x),
to(x, y) =defx 7→ (y),

where the predicate to(x, y) has the definition clause x 7→ (y) and introduced to
make the inductive definition of two satisfy the conditions for definition clauses.

14 K. Nakazawa et al.

The predicate two(x, y) just means x 7→ (y) ∗ y 7→ (x), and hence the entailment
two(x, y) ⊢ two(y, x) is valid. The proof of this entailment is constructed as
follows.

First, we do the initialization (steps 1–6), and then the following subgoal
remains

(̸= {x, y, nil}) ∧ two(x, y) ∧ y ↓⊢ two(y, x).

Then, we start the main loop with this subgoal. The succedent has no root
x, so we apply (Factor) at the step 8, and then we obtain

(̸= {x, y, nil}) ∧ two(x, y) ∧ y ↓⊢ ∃y′.(to(x, y′)—∗stwo(y, x)) ∗ to(x, y′).

By unfolding (step 9) we obtain

(̸= {x, y, nil})∧y = z∧x 7→ (z)∗(to(z, x)∧y ↓) ⊢ ∃y′.(to(x, y′)—∗stwo(y, x))∗x 7→ (y′),

and by matching (step 10) we obtain

x ↑ ∧(̸= {x, y, nil}) ∧ (to(y, x) ∧ y ↓) ⊢ to(x, y)—∗stwo(y, x).

The steps 2–5 do not change it, and y ↓ is removed at the step 6.3, so the subgoal

x ↑ ∧(̸= {x, y, nil}) ∧ to(y, x) ⊢ to(x, y)—∗stwo(y, x) (∗)

is the input of the next main loop.
Here, by the definition, the strong wand to—∗stwo is defined by the following

clause.
to(x′, y′)—∗stwo(x, y) =def y = x′ ∧ x = y′ ∧ x 7→ (x′).

Note that there is no clause with to—∗sto, since to ̸∈ Dep(to). to(x′, y′)—∗stwo(x, y)
implies that to(x′, y′) is a proper subheap of two(x, y) which does not contain x,
and the strong wand represents the singleton heap x 7→ (y).

For (∗), we have common root y, so skip the step 8. By unfolding we obtain

x ↑ ∧(̸= {x, y, nil}) ∧ y 7→ (x) ⊢ x = x ∧ y = y ∧ y 7→ (x),

and by matching we obtain

{x, y} ↑ ∧(̸= {x, y, nil}) ∧ emp ⊢ x = x ∧ y = y ∧ emp.

By the pure check (step 4) the equalities in the succedent are removed, and in
the termination check (step 5) the proof successfully finishes.

Example 4. The second example is the motivating example given in the intro-
duction. The inductive definition of lsa is

lsa(x, y, z) =def x = z ∧ x 7→ (y)

∨ ∃w.x = z ∧ x 7→ (w) ∗ lsa(w, y, w)
∨ ∃w.x 7→ (w) ∗ lsa(w, y, z),

Cyclic Theorem Prover for Separation Logic by Magic Wand 15

and the entailment to be checked is lsa(x, x, y) ⊢ lsa(y, y, x).

By initialization (the steps 1–6), we have the subgoals:

lsa(x, x, x) ⊢ lsa(x, x, x),

(̸= {x, y, nil}) ∧ lsa(x, x, y) ∧ y ↓ ⊢ lsa(y, y, x),

The case of y ↑ is removed by the unsat check.

The nontrivial subgoal is the second one. In order to choose predicates to
be unfolded, we want to find the common root on both sides, but there is not
such a root. Hence, we apply (Factor) at the step 8 to expose the root x in the
succedent.

(̸= {x, y, nil}) ∧ lsa(x, x, y) ∧ y ↓ ⊢ ∃y′z′.(lsa(x, y′, z′)—∗slsa(y, y, x)) ∗ lsa(x, y′, z′).

By unfolding lsa in the antecedent (step 9), we obtain the three cases

(̸= {x, y, nil}) ∧ x = y ∧ x 7→ x ⊢ · · · ,
(̸= {x, y, nil}) ∧ x = y ∧ x 7→ (w) ∗ (lsa(w, x,w) ∧ y ↓) ⊢ · · · ,

(̸= {x, y, nil}) ∧ x 7→ (w) ∗ (lsa(w, x, y) ∧ y ↓) ⊢ · · · ,

but the first two cases will be removed by the unsat check, so we ignore these
cases here. By unfolding lsa in the succedent, we obtain one subgoal with three
disjuncts in the succedent.

(̸= {x, y, nil}) ∧ x 7→ (w) ∗ (lsa(w, x, y) ∧ y ↓) ⊢
∃y′z′.x = z′ ∧ (lsa(x, y′, z′)—∗slsa(y, y, x)) ∗ x 7→ (y′),

∃y′z′w′.x = z′ ∧ (lsa(x, y′, z′)—∗slsa(y, y, x)) ∗ x 7→ (w′) ∗ lsa(w′, y′, w′),

∃y′z′w′.(lsa(x, y′, z′)—∗slsa(y, y, x)) ∗ x 7→ (w′) ∗ lsa(w′, y′, z′).

By the matching step (step 10), we have

x ↑ ∧(̸= {x, y, nil}) ∧ lsa(w, x, y) ∧ y ↓⊢
lsa(x,w, x)—∗slsa(y, y, x),
∃y′.(lsa(x, y′, x)—∗slsa(y, y, x)) ∗ lsa(w, y′, w),
∃y′z′.(lsa(x, y′, z′)—∗slsa(y, y, x)) ∗ lsa(w, y′, z′).

Then, at the step 2, we have already known (̸= {x, y, nil}), so the case analysis
for w is sufficient. Since x ↑ and w is a root, so the cases w = x and w = nil
are unsat, and hence we have two cases, w = y and w ̸= y. Then, the first
disjunct containing x = w is removed in the pure check (step 4), and we have

16 K. Nakazawa et al.

the following two subgoals.

x ↑ ∧(̸= {x, y, nil}) ∧ lsa(y, x, y) ∧ y ↓⊢
lsa(x, y, x)—∗slsa(y, y, x),
∃y′.(lsa(x, y′, x)—∗slsa(y, y, x)) ∗ lsa(y, y′, y),
∃y′z′.(lsa(x, y′, z′)—∗slsa(y, y, x)) ∗ lsa(y, y′, z′).

x ↑ ∧(̸= {x, y, w, nil}) ∧ lsa(w, x, y) ∧ y ↓⊢
lsa(x,w, x)—∗slsa(y, y, x),
∃y′.(lsa(x, y′, x)—∗slsa(y, y, x)) ∗ lsa(w, y′, w),
∃y′z′.(lsa(x, y′, z′)—∗slsa(y, y, x)) ∗ lsa(w, y′, z′).

At the normalization step (step 6), y ↓ and disjuncts containing two predicates
with the same root y in the first subgoal are removed.

x ↑ ∧(̸= {x, y, nil}) ∧ lsa(y, x, y) ↓⊢
lsa(x, y, x)—∗slsa(y, y, x).

x ↑ ∧(̸= {x, y, w, nil}) ∧ lsa(w, x, y) ∧ y ↓⊢
lsa(x,w, x)—∗slsa(y, y, x),
∃y′.(lsa(x, y′, x)—∗slsa(y, y, x)) ∗ lsa(w, y′, w),
∃y′z′.(lsa(x, y′, z′)—∗slsa(y, y, x)) ∗ lsa(w, y′, z′).

These are the output of the normalization phase. We cannot find any cycle, so we
repeat the main loop for this set of subgoals. At last, the procedure successfully
stop for all of subgoals, and answer VALID.

5 Experiments

In order to confirm the usefulness of our procedure with the spatial factorization,
we give a prototype prover, which is implemented in OCaml with about 6k
lines of code. The entailments which are proved in our system are listed in
Figure 4, where the inductive definitions of the predicates are in Figure 5. These
experiments were conducted on Mac OS 10.12 machine with Intel R⃝ CoreTM i5
(1.3GHz) processor and 16GB RAM.

The current implementation is limited on the following points.

– The depth of the strong wands is limited to one, that is, the set Factaux(
−→
R—∗sP)

is considered only for
−→
R = ∅.

– We have not had complete SAT checker for the extended language, so we
use only a sufficient condition for unsatisfiability for (Unsat) rule.

Hence, if the prover fails to prove an entailment, it just means unknown.
For #1, #2, #4, and #7 the prover actually uses the Factor rule. #7 is

slightly different from the motivating example, in which the assumption y ↓ is

Cyclic Theorem Prover for Separation Logic by Magic Wand 17

entailments time (sec.)

1* two(x, y) ⊢ two(y, x) 0.01

2* tri(x, y, z) ⊢ tri(y, z, x) 1.03

3 ls(x, y) ∗ ls(y, z) ⊢ ls(x, z) 0.10

4* ls(x, x) ∧ y ↓⊢ ls(y, y) 0.02

5 lsa(x, y, z) ⊢ ls(x, y) 0.61

6 ls(x, y) ⊢ lsa(x, y, x) 0.51

7* lsa(x, x, y) ∧ y ↓⊢ lsa(y, y, x) 3.90

8 z ↑ ∧lsn(x, y) ∗ lsn(y, z) ⊢ lsn(x, z) 0.02

9 lsn(x, y) ∗ lsn(y, z) ∗ to(z, nil) ⊢ lsn(x, z) ∗ to(z, nil) 0.33

10 dll(h, p, n, t) ∗ dll(n, t, h, p) ⊢ dll(h, p, h, p) 27.74

(* proved with the Factor rule)

Fig. 4. Proved entailments

descriptions predicates definition clauses

point to to(x, y) x 7→ (y)

two cells linked to each other two(x, y) ∃z.y = z ∧ x 7→ (z) ∗ to(z, x)
cyclic three cells tri(x, y, z) ∃w.y = w ∧ x 7→ (w) ∗ tri1(w, z, x)

tri1(y, z, x) ∃w.z = w ∧ y 7→ (w) ∗ to(w, x)
list ls(x, y) x 7→ (y)

∨∃z.x 7→ (z) ∗ ls(z, y)
list with an allocated cell lsa(x, y, z) x = z ∧ x 7→ (y)

∨∃w.x = z ∧ x 7→ (w) ∗ lsa(w, y, w)
∨∃w.x 7→ (w) ∗ lsa(w, y, z)

acyclic linear list lsn(x, y) x ̸= y ∧ x 7→ (y)
∨∃z.x ̸= y ∧ x 7→ (z) ∗ lsn(z, y)

doubly-linked list dll(h, p, n, t) h = t ∧ h 7→ (p, n)
∨∃z.h 7→ (p, z) ∗ dll(z, h, n, t)

Fig. 5. Definitions of inductive predicates

18 K. Nakazawa et al.

not needed. Since our implementation uses a weaker satisfiability checker, we
need y ↓ for experiments. It takes much time to prove #10. We guess that one
of the reasons is the cost of case analysis, since this entailment contains four
variables, and they makes a lot of cases on = / ̸= and ↑ / ↓. If we have efficient
SAT checker, we can exclude the case of t ↑ ∧dll(h, p, n, t), and expect faster
answer.

6 Conclusion

We introduced the strong wand, which is a variant of the so-called magic wand,
to define the Factor rule for entailment checking in symbolic heaps with cone
inductive definition. The Factor rule is the inference rule for the spatial factor-
ization, which enables us to find a common root on both sides of entailments we
should unfold in the Unfold-Match-Remove proof-search procedure.

The prover introduced in this paper is a first-step prototype to make sure that
the spatial factorization works well for entailment prover, and some examples,
including the motivating example, are correctly proved. However, in order to
check more complicated examples, we have to remove the limitation given in
Section 5, and refine the prover. It is one of the pressing issues to implement
a complete SAT checker for the extended language. Optimization to avoid the
large case analysis is also necessary.

Another future work is a theoretical aspect of cyclic-proof system. In par-
ticular, complete cyclic-proof system with decidable and efficient proof search is
expected. In [9], a complete cyclic-proof system is introduced with some seman-
tic conditions for inductive predicates. The authors currently propose another
complete cyclic-proof system CSLIDω [13] with the syntactic conditions for in-
ductive predicates, which are the same as this paper. In that system, the strong
wand and the Factor rule play important roles.

References

1. T. Antonopoulos, N. Gorogiannis, C. Haase, M. Kanovich, and J. Ouaknine, Foun-
dations for Decision Problems in Separation Logic with General Inductive Predi-
cates, In: Proceedings of FoSSaCS 2014, LNCS 8412 (2014) 411–425.

2. J. Berdine, C. Calcagno, P. W. O’Hearn, A Decidable Fragment of Separation
Logic, In: Proceedings of FSTTCS 2004, LNCS 3328 (2004) 97–109.

3. J. Berdine, C. Calcagno, and P. W. O’Hearn, Symbolic Execution with Separation
Logic, In: Proceedings of APLAS 2005, LNCS 3780 (2005) 52–68.

4. J. Brotherston, D. Distefano, and R. L. Petersen, Automated cyclic entailment
proofs in separation logic, In: Proceedings of CADE-23 (2011) 131–146.

5. J. Brotherston, N. Gorogiannis, and R. L. Petersen, A Generic Cyclic Theorem
Prover, In: Proceedings of APLAS 2012, LNCS 7705 (2012) 350–367.

6. J. Brotherston, N. Gorogiannis, M. Kanovich, and R. Rowe, Model checking for
symbolic-heap separation logic with inductive predicates, In: Proceedings of POPL
2016 (2016) 84-96.

Cyclic Theorem Prover for Separation Logic by Magic Wand 19

7. D. Chu, J. Jaffar, and M. Trinh, Automatic Induction Proofs of Data-Structures
in Imperative Programs, In: Proceedings of PLDI 2015 (2015) 457–466.

8. R. Iosif, A. Rogalewicz, and J. Simacek, The Tree Width of Separation Logic with
Recursive Definitions, In: Proceedings of CADE-24, LNCS 7898 (2013) 21–38.

9. R. Iosif and C. Serban, Complete Cyclic Proof Systems for Inductive Entailments,
Available at https://arxiv.org/abs/1707.02415, (2017).

10. J.C. Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures,
In: Proceedings of Seventeenth Annual IEEE Symposium on Logic in Computer
Science (LICS2002) (2002) 55–74.

11. Q. Ta, T. Le, S.. Khoo, and W. Chin, Automated Mutual Induction in Separation
Logic, In: Proceedings of FM 2016, LNCS 9995 (2016) 659–676.

12. Q. Ta, T. Le, S.. Khoo, and W. Chin, Automated Lemma Synthesis in Symbolic-
Heap Separation Logic, In: Proceedings of POPL 2018, (2018)

13. M. Tatsuta, K. Nakazawa, and D. Kimura, Completeness of Cyclic Proofs for Sym-
bolic Heaps, Available at https://arxiv.org/abs/1804.03938, (2018).

