Characterizing Trees for Lambda-mu Terms

Koji Nakazawa
Graduate School of Information Science, Nagoya University

Abstract

We give the conditions to characterize Böhm tree structures which represent terms of the Lambda-mu calculus. This result answers a question stated in Saurin's FLOPS paper.

1 Introduction

In [3], Saurin extends the Böhm trees and the expanded Böhm trees, called Nakajima trees in [3], to the $\Lambda \mu$-terms. It is a beautiful theoretical result that we can obtain the (expanded) Böhm trees for $\Lambda \mu$ just by extending the bound of lengths of prefixes and arguments to ω^{2}, whereas it is ω for the λ-calculus. An open problem stated in [3] is on characterization of the tree structures which represent some $\Lambda \mu$-terms. For the λ-calculus, this problem was solved by Nakajima in [1], where he gave some conditions for the expanded Böhm trees and showed that they give the exact characterization of trees which represents some λ-terms.

In this paper, we extended Nakajima's result to $\Lambda \mu$, and solve Saurin's open problem. The idea of the characterizing conditions are almost the same as [1], and they require that the information of each node is computable, and that all of nodes except for a finite part are obtained by η-expansion. The conditions for $\Lambda \mu$-calculus become much more complicated than the case of λ-calculus, because we have to manage the correspondence of μ-variables in prefixes and bodies.

2 Expanded Böhm Trees of $\boldsymbol{\Lambda} \boldsymbol{\mu}$-Terms

Definition 1. The $\Lambda \mu$-terms are defined as follows:

$$
t, s::=x|\lambda x . t|(t) s|\mu \alpha . t|(t) \alpha
$$

$\Sigma_{\Lambda \mu}$ is the set of all $\Lambda \mu$-terms. $\Sigma_{\Lambda \mu}^{c}$ is the set of all closed $\Lambda \mu$-terms. In this paper, we always suppose every $\Lambda \mu$-term is closed with respect to μ-variables.

The reduction rules for the $\Lambda \mu$-calculus are the following.

$$
\begin{aligned}
& (\lambda x . t) s \rightarrow_{\beta_{T}} t[x:=s] \\
& (\mu \alpha . t) \beta \rightarrow \beta_{S} t[\alpha:=\beta] \\
& \mu \alpha .(t) \alpha \rightarrow \eta_{\eta_{S}} t \\
& \quad \mu \alpha . t \rightarrow \rightarrow_{\text {fst }} \lambda x . \mu \alpha . t[(v) \alpha:=(v) x \alpha]
\end{aligned} \quad(\alpha \notin F V(t))
$$

As in [3], the stream head normal form (shnf) of a $\Lambda \mu$-term is

$$
\lambda \boldsymbol{x}^{0} \mu \alpha^{0} \cdots \lambda \boldsymbol{x}^{n-1} \mu \alpha^{n-1} \cdot(y) \boldsymbol{t}^{0} \beta^{0} \cdots \boldsymbol{t}^{m-1} \beta^{m-1}
$$

where each \boldsymbol{x}^{i} and \boldsymbol{t}^{j} are finite sequences of λ-variables and $\Lambda \mu$-terms. For simplicity, we write $t \rightarrow{ }_{h}^{*} h$ for the head reduction followed by zero- or one-step η_{S}-reduction to a shnf h.

Saurin showed in [3] that the Böhm trees are adapted to the $\Lambda \mu$-calculus by extending the width from ω to ω^{2}. We consider fully η-expanded form, and hence each node uniformly has ω^{2} children. We call such trees expanded Böhm trees for the $\Lambda \mu$-calculus, which are originally defined by coinduction as follows:

$$
\mathfrak{T}::=\perp \mid \Lambda\left(x_{i}\right)_{i \in \omega^{2}} .(y)\left(\mathfrak{T}_{j}\right)_{j \in \omega^{2}},
$$

where $\Lambda\left(x_{i}\right)_{i \in \omega^{2}}$. (y) is called a prefix. Positions of nodes in trees are expressed by finite lists of elements of ω^{2}.

Definition 2. Δ is the set of all finite lists consisting of elements of ω^{2}, that is, [] $\in \Delta$ (empty list), and if $\delta \in \Delta$ and $\mu \in \omega^{2}$, then $\delta:: \mu \in \Delta$. $\delta \leq \delta^{\prime}$ means that δ is an initial segment of $\delta^{\prime} . \delta<\delta^{\prime}$ means $\delta \leq \delta^{\prime}$ and $\delta \neq \delta^{\prime}$.

By renaming bound variables, we suppose that bound λ-variables in prefixes are uniformly indexed by an element of $\Delta \times \omega^{2}$ depending on the position where they are abstracted, that is, we define the set of all bound λ variables as $B V_{\lambda}=$ $\left\{x_{\delta}^{\mu} \mid \delta \in \Delta, \mu \in \omega^{2}\right\}$, and the prefix at the position δ is fixed as $\lambda \boldsymbol{x}_{\delta}^{0} \boldsymbol{x}_{\delta}^{1} \cdots \cdots$. (y) with some head variable y, where $\boldsymbol{x}_{\delta}^{i}=x_{\delta}^{\omega \cdot i} x_{\delta}^{\omega \cdot i+1} x_{\delta}^{\omega \cdot i+2} \cdots$. We use this notation $\boldsymbol{x}_{\delta}^{i}$ in the following, and another notation $\boldsymbol{x}_{\delta}^{i,<j}=x_{\delta}^{\omega \cdot i} x_{\delta}^{\omega \cdot i+1} \cdots x_{\delta}^{\omega \cdot i+j-1}$.

In order to consider the fst-reduction, we have to remember some information on bound μ-variables during the definition of the expanded Böhm trees of $\Lambda \mu$ terms. In the following definition, $\phi(\delta, k)=l$ means that the prefix of the shnf at the position δ contains a subterm of the form $\cdots \lambda \boldsymbol{x}_{\delta}^{k,<l} \mu \alpha_{\delta}^{k} \cdots$. Similarly to $B V_{\lambda}$, we fix the name of bound μ-variables depending on the position where they are abstracted. The set of bound μ-variables is $B V_{\mu}=\left\{\alpha_{\delta}^{k} \mid \delta \in \Delta, k \in \omega\right\}$.

Then, names of head variables at each position and existence of shnf are sufficient to characterize expanded Böhm trees.

Definition 3. An expanded Böhm tree for $\Lambda \mu$-calculus is a mapping \mathfrak{T} from Δ to $B V_{\lambda} \cup\{\perp\}$ such that $\mathfrak{T}(\delta)=\perp$ and $\delta^{\prime}>\delta$ imply $\mathfrak{T}\left(\delta^{\prime}\right)=\perp$. The set of the expanded Böhm trees is denoted by $\Lambda \mu-\mathfrak{B} \mathfrak{T}^{+}$. We write $\mathfrak{T}(\delta) \uparrow$ to mean $\mathfrak{T}(\delta)=\perp$, and $\mathfrak{T}(\delta) \downarrow$ otherwise.

We can intuitively understand this definition as follows: $\mathfrak{T}(\delta)=x_{\delta^{\prime}}^{\mu}$ means that the head variable in the prefix at δ is the μ-th variable in the prefix at δ^{\prime}, and $\mathfrak{T}(\delta) \uparrow$ means that the node at δ is \perp, which represents an unsolvable term, and we suppose that all nodes below \perp are indexed by \perp for simplicity.

Definition 4. For $t \in \Sigma_{\Lambda \mu}^{c}$, we define the expanded Böhm tree $\mathfrak{B T} \mathfrak{T}_{t}^{+}$of t with auxiliary partial mappings $t_{(\cdot)}: \Delta \rightarrow \Sigma_{\Lambda \mu} \cup\{\perp\}$ and $\phi_{t}: \Delta \times \omega \longrightarrow \omega$ as follows:
(0) \mathfrak{T} is recursive, and there exist the following five partial recursive mappings:
$-\mathrm{p}_{\mu}^{\mathfrak{T}}, \mathrm{b}_{\mu}^{\mathfrak{T}}: \Delta \longrightarrow \omega$, the domains of which are $\{\delta \in \Delta \mid \mathfrak{T}(\delta) \downarrow\}$,
$-\mathrm{p}_{\lambda}^{\mathfrak{T}}, \mathrm{b}_{\lambda}^{\mathfrak{T}}: \Delta \times \omega \longrightarrow \omega$, and $\mathrm{Bd}_{\mu}^{\mathfrak{T}}: \Delta \times \omega \longrightarrow \Delta \times \omega$, the domains of which are $\{\langle\delta, k\rangle \in \Delta \times \omega \mid \mathfrak{T}(\delta) \downarrow\}$.
(1) $\mathfrak{T}(\delta)=x_{\delta^{\prime}}^{\mu} \Longrightarrow \delta^{\prime} \leq \delta$ and $\operatorname{Bd}_{\mu}^{\mathfrak{T}}(\delta, k)=\left\langle\delta^{\prime}, k^{\prime}\right\rangle \Longrightarrow \delta^{\prime} \leq \delta$
(2) $\mathfrak{T}(\delta::(\omega \cdot k+l))=x_{\delta^{\prime}}^{\omega} \cdot k^{\prime}+l^{\prime} \& l<\mathbf{b}_{\lambda}^{\mathfrak{T}}(\delta, k) \Longrightarrow l^{\prime}<\mathbf{p}_{\lambda}^{\mathfrak{T}}\left(\delta^{\prime}, k^{\prime}\right)$
(3) $\operatorname{Bd}_{\mu}^{\mathfrak{T}}(\delta, k)=\left\langle\delta^{\prime}, k^{\prime}\right\rangle \& k<\mathbf{b}_{\mu}^{\mathfrak{T}}(\delta) \Longrightarrow k^{\prime}<\mathbf{p}_{\mu}^{\mathfrak{T}}\left(\delta^{\prime}\right)$
(4) $\operatorname{Bd}_{\mu}^{\mathfrak{T}}(\delta, k)=\left\langle\delta^{\prime}, k^{\prime}\right\rangle \& l \geq b_{\lambda}^{\mathfrak{T}}(\delta, k) \Longrightarrow$
$-\mathfrak{T}(\delta::(\omega \cdot k+l))=x_{\delta^{\prime}}^{\omega \cdot k^{\prime}+\left(p_{\lambda}^{\mathfrak{T}}\left(\delta^{\prime}, k^{\prime}\right)+l-\mathrm{b}_{\lambda}^{\mathfrak{T}}(\delta, k)\right)}$
$-\delta^{\prime \prime} \geq \delta::(\omega \cdot k+l) \Longrightarrow \mathfrak{T}\left(\delta^{\prime \prime}:: \mu\right)=x_{\delta^{\prime \prime}}^{\mu}$ for any $\mu \& \mathrm{p}_{\mu}^{\mathfrak{T}}\left(\delta^{\prime \prime}\right)=0 \& \mathrm{~b}_{\mu}^{\mathfrak{T}}\left(\delta^{\prime \prime}\right)=0$
(5) $\mathrm{p}_{\lambda}^{\mathfrak{T}}\left(\delta, \mathbf{p}_{\mu}^{\mathfrak{T}}(\delta)+n\right)=0$ and $\mathbf{b}_{\lambda}^{\mathfrak{T}}\left(\delta, \mathbf{b}_{\mu}^{\mathfrak{T}}(\delta)+n\right)=0$ for any $n \in \omega$
(6) $\mathrm{Bd}_{\mu}^{\mathfrak{T}}\left(\delta, \mathrm{b}_{\mu}^{\mathfrak{T}}(\delta)+n\right)=\left\langle\delta, \mathrm{p}_{\mu}^{\mathfrak{T}}(\delta)+n\right\rangle$ for any $n \in \omega$

Fig. 1. Characterizing Conditions
$-t_{[]}=t$

- If t_{δ} has no shnf, $\mathfrak{B} \mathfrak{T}_{t}^{+}(\delta)=\perp$, and $t_{\delta^{\prime}}$ for any $\delta<\delta^{\prime}$ and $\phi_{t}\left(\delta^{\prime \prime}, k\right)$ for any $\delta \leq \delta^{\prime \prime}$ and $k \in \omega$ are undefined.
- If $\bar{t}_{\delta} \rightarrow_{h}^{*} \lambda \boldsymbol{x}_{\delta}^{0,<i_{0}} \mu \alpha_{\delta}^{0} \cdots \lambda \boldsymbol{x}_{\delta}^{n-1,<i_{n-1}} \mu \alpha_{\delta}^{n-1} .(y) \boldsymbol{t}^{0} \alpha_{\delta_{0}}^{j_{0}} \cdots \boldsymbol{t}^{m-1} \alpha_{\delta_{m-1}}^{j_{m-1}}$, then

$$
\begin{aligned}
& \mathfrak{B} \mathfrak{T}_{t}^{+}(\delta)=y \\
& \phi_{t}(\delta, k)= \begin{cases}i_{k} & (k<n) \\
0 & (k \geq n)\end{cases} \\
& t_{\delta::(\omega \cdot k+l)}= \begin{cases}t_{k}^{l} & \left(k<m \& \boldsymbol{t}_{k}=t_{k}^{0} \cdots t_{k}^{i_{k}-1} \& l<i_{k}\right) \\
x_{\delta_{k}}^{\omega \cdot j_{k}+\left(\phi_{t}\left(\delta_{k}, j_{k}\right)+l-i_{k}\right)} \\
x_{\delta}^{\omega \cdot(k-m+n)+l} & \left(k<m \& \boldsymbol{t}_{k}=t_{k}^{0} \cdots t_{k}^{i_{k}-1} \& l \geq i_{k}\right)\end{cases} \\
& \hline
\end{aligned}
$$

Note that $\delta_{k} \leq \delta$ holds for $0 \leq k<m$ since $\alpha_{\delta_{k}}^{j_{k}}$ is a bound μ-variable in t.

3 Characterization

3.1 Characterization of Expanded Böhm Trees for $\boldsymbol{\Lambda} \boldsymbol{\mu}$-Terms

For each $\mathfrak{T} \in \Lambda \mu-\mathfrak{B} \mathfrak{T}^{+}$, we consider the conditions in Figure 1. The intuitive meaning of the partial mappings is the following: $\mathrm{p}_{\mu}^{\mathfrak{T}}(\delta)$ is the number of μ abstractions in the prefix of the shnf of $t_{\delta} \cdot \mathrm{p}_{\lambda}^{\mathfrak{T}}(\delta, k)$ is the number of λ-abstractions surrounding the k-th μ-variable in the prefix of the shnf of t_{δ}. $\mathrm{b}_{\mu}^{\mathfrak{T}}(\delta)$ is the number of μ-variables in the body part of the shnf of t_{δ}. $\mathrm{b}_{\lambda}^{\mathfrak{T}}(\delta, k)$ is the number of term arguments delimited by the k-th μ-variable in the body part of the shnf of t_{δ}. $\mathrm{b}_{\lambda}^{\mathfrak{T}}$ corresponds to the function ϕ_{t}. $\mathrm{Bd}_{\mu}^{\mathfrak{T}}(\delta, k)=\left\langle\delta^{\prime}, k^{\prime}\right\rangle$ means that the k-th μ variable in the body part of the shnf of t_{δ} is bound at k^{\prime}-th μ-abstraction in the prefix of the shnf of t_{δ}^{\prime}.

The conditions are intuitively explained as follows. (1) means that each variable is bound at a position outside of it. (2) and (3) require that, if a variable occurs in a body part of a shnf, it is bound at a prefix which is not in an η-expanded part, which means a part obtained by the η_{S}-expansion and the fst-reduction. (4) means that, if a λ-variable occurs in an η-expanded part, it is obtained a fst-reduction for a corresponding μ-variable, and all of the nodes below it are in η-expanded parts. (5) means that, if a μ-variable is in an η expanded part, there is no λ-variable accompanying the μ-variable. (6) means that, if a μ-variable occurs in an η-expanded part, the μ-variables following it are obtained by the η_{S}-expansion.

Theorem 1. For $\mathfrak{T} \in \Lambda \mu-\mathfrak{B} \mathfrak{T}^{+}$, there exists a closed $\Lambda \mu$-term t such that $\mathfrak{T}=$ $\mathfrak{B} \mathfrak{T}_{t}^{+}$iff \mathfrak{T} satisfies all of the conditions in Figure 1.
Proof. (The detailed proof is in [2].)
Let $\mathfrak{T}=\mathfrak{B} \mathfrak{T}_{t}^{+}$. By definition, when $\mathfrak{T}(\delta)=y$, we have

$$
\begin{aligned}
& t_{\delta} \rightarrow_{h}^{*} \lambda \boldsymbol{x}_{\delta}^{0,<i_{0}} \mu \alpha_{\delta}^{0} \cdots \mu \alpha_{\delta}^{k-2} \lambda x_{\delta}^{k-1,<i_{k-1}} \mu \alpha_{\delta}^{k-1} . \\
& \quad(y) t^{0} \cdots t^{j_{0}} \alpha_{\delta_{0}}^{j_{0}} \cdots \alpha_{\delta_{l-2}}^{j_{l-2}} t^{\omega \cdot(l-1)} \cdots t^{\omega \cdot(l-1)+j_{l-1}-1} \alpha_{\delta_{l-1}}^{j_{l-1}} .
\end{aligned}
$$

Then we define the partial mappings in the condition (0) as follows:

$$
\begin{array}{rlrl}
\mathrm{p}_{\mu}^{\mathfrak{T}}(\delta)=k & \mathrm{~b}_{\mu}^{\mathfrak{T}}(\delta) & =l \\
\mathrm{p}_{\lambda}^{\mathfrak{T}}(\delta, n)= \begin{cases}i_{n} & (n<k) \\
0 & (n \geq k)\end{cases} & \mathrm{b}_{\lambda}^{\mathfrak{T}}(\delta, n) & =\left\{\begin{array}{lll}
j_{n} & (n<l) \\
0 & (n \geq l)
\end{array}\right. \\
\mathrm{Bd}_{\mu}^{\mathfrak{Z}}(\delta, n) & = \begin{cases}\left\langle\delta_{n}, j_{n}\right\rangle & (n<l) \\
\langle\delta, n-l+k\rangle & (n \geq l)\end{cases}
\end{array}
$$

They are undefined when $\mathfrak{T}(\delta) \uparrow$. They are recursive by definition. It is easy to see that \mathfrak{T} satisfies the conditions (0) through (6).

For the other direction, suppose that $\mathfrak{T} \in \Lambda \mu-\mathfrak{B} \mathfrak{T}^{+}$satisfies all of the conditions in Figure 1, and we will construct a term $t^{\mathfrak{T}}$ such that $\mathfrak{B} \mathfrak{T}_{t^{\mathfrak{T}}}^{+}=\mathfrak{T}$. In the following, we omit the superscript \mathfrak{T} for each mapping and term.

We have the encodings of elements of $\omega, \omega^{2}, \Delta, B V$, and pairs of them in the λ-calculus. These encodings are overlined. By (0), we have λ-representations of \mathfrak{T} and the five partial recursive functions: $\overline{\mathfrak{T}}, \overline{\mathrm{p}_{\mu}}, \overline{\mathrm{p}_{\lambda}}, \overline{\mathrm{b}_{\mu}}, \overline{\mathrm{b}_{\lambda}}$, and $\overline{\mathrm{Bd}_{\mu}}$. Furthermore we can assume the existence of the following λ-term π :

$$
\pi \bar{\delta} \rightarrow_{h}^{*} \begin{cases}\lambda z . z & (\mathfrak{T}(\delta) \downarrow) \\ \text { has no hnf } & (\mathfrak{T}(\delta) \uparrow)\end{cases}
$$

We define association lists L_{λ} and L_{μ} to map correspondences between actual bound variables and their encodings.

$$
\begin{array}{ll}
\overline{\mathrm{init}}_{\lambda}=\lambda z . z & {[\langle\delta, \mu\rangle \mapsto y] @ L_{\lambda}=\lambda z .\left(\text { if } z=\overline{x_{\delta}^{\mu}} \text { then } y \text { else } L z \mathrm{fi}\right)} \\
\overline{\mathrm{init}}_{\mu}=\lambda z . z & {[\langle\delta, k\rangle \mapsto \alpha] @ L_{\mu}=\lambda p z .\left(\text { if } p=\langle\bar{\delta}, \bar{k}\rangle \text { then }(z) \alpha \text { else } L_{\mu} p z \mathrm{fi}\right)}
\end{array}
$$

The term t is recursively defined as follows:

$$
\begin{aligned}
t & =\Theta \overline{]}{\overline{\mathrm{mit}_{\lambda}}}_{\lambda}^{\overline{\mathrm{init}}_{\mu}} \\
\Theta \bar{\delta} L_{\lambda} L_{\mu} & =\pi \bar{\delta}\left(F \bar{\delta} \overline{0} \overline{0}(\overline{\mathfrak{T}} \bar{\delta}) L_{\lambda} L_{\mu}\right) \\
F \bar{\delta} \bar{k} \bar{l} V L_{\lambda} L_{\mu} & = \begin{cases}G \bar{\delta}\left(\overline{\mathrm{~b}_{\mu}} \bar{\delta}\right) \overline{0} V L_{\lambda} L_{\mu} & \left(\mathrm{p}_{\mu}(\delta) \geq k\right) \\
\mu \alpha \cdot F \bar{\delta} \overline{k+1} \overline{0} V L_{\lambda}\left([\langle\delta, k\rangle \mapsto \alpha] @ L_{\mu}\right) & \left(\mathrm{p}_{\lambda}(\delta, k) \leq l\right) \\
\lambda z \cdot F \bar{\delta} \bar{k} \overline{l+1} V\left([\langle\delta, \omega \cdot k+l\rangle \mapsto z] @ L_{\lambda}\right) L_{\mu} & (\text { otherwise })\end{cases} \\
G \bar{\delta} \bar{k} \bar{l} V L_{\lambda} L_{\mu} & = \begin{cases}L_{\lambda} V & (k=0 \& l=0) \\
L_{\mu}\left(\overline{\mathrm{Bd}_{\mu}} \bar{\delta} \overline{k-1}\right)\left(G \overline { \delta } \overline { k - 1 } \left(\overline{\mathrm{b}_{\lambda}} \bar{\delta} \overline{\left.k-1) V L_{\lambda} L_{\mu}\right)}\right.\right. & (k>0 \& l=0) \\
\left(G \bar{\delta} \bar{k} \overline{l-1} V L_{\lambda} L_{\mu}\right)\left(\Theta \overline{\delta::(\omega \cdot k+(l-1))} L_{\lambda} L_{\mu}\right) & (l>0)\end{cases}
\end{aligned}
$$

Then, we can see that $\mathfrak{T}(\delta)=\mathfrak{B} \mathfrak{T}_{t}^{+}(\delta)$ for any $\delta \in \Delta$.

3.2 Free λ-Variables

The discussion in the previous subsection can be extended to $\Lambda \mu$-terms with free λ-variables. We suppose the set of free λ-variables $F V_{\lambda}$, which is disjoint from $B V_{\lambda}$. The codomain of $\Lambda \mu-\mathfrak{B} \mathfrak{T}^{+}$is extended to $B V_{\lambda} \cup F V_{\lambda} \cup\{\perp\}$. We define $F V_{\lambda}(\mathfrak{T})=\left\{z \in F V_{\lambda} \mid \mathfrak{T}(\delta)=z\right.$ for some $\left.\delta\right\}$, and we require the following additional condition.
(7) $\# F V_{\lambda}(\mathfrak{T})<\omega$

Then, the encoding of the variables are extended to

$$
\bar{y}= \begin{cases}\bar{y} & \left(y \in B V_{\lambda}\right) \\ y & \left(y \in F V_{\lambda}(\mathfrak{T})\right),\end{cases}
$$

which can be defined due to the condition (7). Notice that for any association list L_{λ} of λ-variables and $y \in F V_{\lambda}$, we have $L_{\lambda} y \rightarrow_{h}^{*} \overline{\operatorname{init}}_{\lambda} y \rightarrow_{h} y$.

Acknowledgements. This work was supported by Grants-in-Aid for Scientific Research KAKENHI (C) 15K00012.

References

1. Nakajima, R. Infinite normal forms for the λ-calculus. In Symposium on LambdaCalculus and Computer Science Theory, pages 62-82, 1975.
2. Koji Nakazawa. Characterizing trees for Lambda-mu terms. Extended version of this paper with the proof of the main theorem. Available at http://www.sqlab.i.is.nagoya-u.ac.jp/~nakazawa/papers/hor2016appendix.pdf.
3. A. Saurin. Standardization and Böhm trees for $\Lambda \mu$-calculus. In Blume, M., Kobayashi, N., and Vidal, G., editors, Tenth International Symposium on Functional and Logic Programming (FLOPS 2010), volume 6009 of LNCS, pages 134149. Springer, 2010.
