
Characterizing Trees for Lambda-mu Terms

Koji Nakazawa

Graduate School of Information Science, Nagoya University

Abstract. We give the conditions to characterize Böhm tree structures
which represent terms of the Lambda-mu calculus. This result answers
a question stated in Saurin’s FLOPS paper.

1 Introduction

In [3], Saurin extends the Böhm trees and the expanded Böhm trees, called
Nakajima trees in [3], to the Λµ-terms. It is a beautiful theoretical result that
we can obtain the (expanded) Böhm trees for Λµ just by extending the bound
of lengths of prefixes and arguments to ω2, whereas it is ω for the λ-calculus.
An open problem stated in [3] is on characterization of the tree structures which
represent some Λµ-terms. For the λ-calculus, this problem was solved by Naka-
jima in [1], where he gave some conditions for the expanded Böhm trees and
showed that they give the exact characterization of trees which represents some
λ-terms.

In this paper, we extended Nakajima’s result to Λµ, and solve Saurin’s open
problem. The idea of the characterizing conditions are almost the same as [1],
and they require that the information of each node is computable, and that all
of nodes except for a finite part are obtained by η-expansion. The conditions for
Λµ-calculus become much more complicated than the case of λ-calculus, because
we have to manage the correspondence of µ-variables in prefixes and bodies.

2 Expanded Böhm Trees of Λµ-Terms

Definition 1. The Λµ-terms are defined as follows:

t, s ::= x | λx.t | (t)s | µα.t | (t)α

ΣΛµ is the set of all Λµ-terms. Σc
Λµ is the set of all closed Λµ-terms. In this

paper, we always suppose every Λµ-term is closed with respect to µ-variables.
The reduction rules for the Λµ-calculus are the following.

(λx.t)s →βT t[x := s]

(µα.t)β →βS t[α := β]

µα.(t)α →ηS t (α ̸∈ FV (t))

µα.t →fst λx.µα.t[(v)α := (v)xα]

As in [3], the stream head normal form (shnf) of a Λµ-term is

λx0µα0 · · ·λxn−1µαn−1.(y)t0β0 · · · tm−1βm−1,

where each xi and tj are finite sequences of λ-variables and Λµ-terms. For sim-
plicity, we write t →∗

h h for the head reduction followed by zero- or one-step
ηS-reduction to a shnf h.

Saurin showed in [3] that the Böhm trees are adapted to the Λµ-calculus
by extending the width from ω to ω2. We consider fully η-expanded form, and
hence each node uniformly has ω2 children. We call such trees expanded Böhm
trees for the Λµ-calculus, which are originally defined by coinduction as follows:

T ::= ⊥ | Λ(xi)i∈ω2 .(y)(Tj)j∈ω2 ,

where Λ(xi)i∈ω2 .(y) is called a prefix. Positions of nodes in trees are expressed
by finite lists of elements of ω2.

Definition 2. ∆ is the set of all finite lists consisting of elements of ω2, that is,
[] ∈ ∆ (empty list), and if δ ∈ ∆ and µ ∈ ω2, then δ :: µ ∈ ∆. δ ≤ δ′ means that
δ is an initial segment of δ′. δ < δ′ means δ ≤ δ′ and δ ̸= δ′.

By renaming bound variables, we suppose that bound λ-variables in prefixes
are uniformly indexed by an element of ∆×ω2 depending on the position where
they are abstracted, that is, we define the set of all bound λ variables as BVλ =
{xµ

δ | δ ∈ ∆, µ ∈ ω2}, and the prefix at the position δ is fixed as λx0
δx

1
δ · · · · · · .(y)

with some head variable y, where xi
δ = xω·i

δ xω·i+1
δ xω·i+2

δ · · · . We use this notation

xi
δ in the following, and another notation xi,<j

δ = xω·i
δ xω·i+1

δ · · ·xω·i+j−1
δ .

In order to consider the fst-reduction, we have to remember some information
on bound µ-variables during the definition of the expanded Böhm trees of Λµ-
terms. In the following definition, φ(δ, k) = l means that the prefix of the shnf
at the position δ contains a subterm of the form · · ·λxk,<l

δ µαk
δ · · · . Similarly to

BVλ, we fix the name of bound µ-variables depending on the position where they
are abstracted. The set of bound µ-variables is BVµ = {αk

δ | δ ∈ ∆, k ∈ ω}.
Then, names of head variables at each position and existence of shnf are

sufficient to characterize expanded Böhm trees.

Definition 3. An expanded Böhm tree for Λµ-calculus is a mapping T from ∆
to BVλ ∪ {⊥} such that T(δ) = ⊥ and δ′ > δ imply T(δ′) = ⊥. The set of
the expanded Böhm trees is denoted by Λµ-BT+. We write T(δ) ↑ to mean
T(δ) = ⊥, and T(δ) ↓ otherwise.

We can intuitively understand this definition as follows: T(δ) = xµ
δ′ means

that the head variable in the prefix at δ is the µ-th variable in the prefix at δ′,
and T(δ) ↑ means that the node at δ is ⊥, which represents an unsolvable term,
and we suppose that all nodes below ⊥ are indexed by ⊥ for simplicity.

Definition 4. For t ∈ Σc
Λµ, we define the expanded Böhm tree BT+

t of t with
auxiliary partial mappings t(·) : ∆ → ΣΛµ∪{⊥} and φt : ∆×ω −→ ω as follows:

2

(0) T is recursive, and there exist the following five partial recursive mappings:

– pTµ, b
T
µ : ∆ −→ ω, the domains of which are {δ ∈ ∆ | T(δ) ↓},

– pTλ , b
T
λ : ∆ × ω −→ ω, and BdTµ : ∆ × ω −→ ∆ × ω, the domains of which are

{⟨δ, k⟩ ∈ ∆× ω | T(δ) ↓}.

(1) T(δ) = xµ
δ′ =⇒ δ′ ≤ δ and BdTµ(δ, k) = ⟨δ′, k′⟩ =⇒ δ′ ≤ δ

(2) T(δ :: (ω · k + l)) = xω·k′+l′

δ′ & l < bTλ(δ, k) =⇒ l′ < pTλ(δ
′, k′)

(3) BdTµ(δ, k) = ⟨δ′, k′⟩ & k < bTµ(δ) =⇒ k′ < pTµ(δ
′)

(4) BdTµ(δ, k) = ⟨δ′, k′⟩ & l ≥ bTλ(δ, k) =⇒

– T(δ :: (ω · k + l)) = x
ω·k′+(pTλ (δ′,k′)+l−bTλ (δ,k))

δ′

– δ′′ ≥ δ :: (ω · k + l) =⇒ T(δ′′ :: µ) = xµ
δ′′ for any µ & pTµ(δ

′′) = 0 & bTµ(δ
′′) = 0

(5) pTλ(δ, p
T
µ(δ) + n) = 0 and bTλ(δ, b

T
µ(δ) + n) = 0 for any n ∈ ω

(6) BdTµ(δ, b
T
µ(δ) + n) = ⟨δ, pTµ(δ) + n⟩ for any n ∈ ω

Fig. 1. Characterizing Conditions

– t[] = t
– If tδ has no shnf, BT+

t (δ) = ⊥, and tδ′ for any δ < δ′ and φt(δ′′, k) for any
δ ≤ δ′′ and k ∈ ω are undefined.

– If tδ →∗
h λx0,<i0

δ µα0
δ · · ·λx

n−1,<in−1

δ µαn−1
δ .(y)t0αj0

δ0
· · · tm−1αjm−1

δm−1
, then

BT+
t (δ)= y

φt(δ, k)=

{
ik (k < n)

0 (k ≥ n)

tδ::(ω·k+l)=

⎧
⎪⎨

⎪⎩

tlk (k < m & tk = t0k · · · t
ik−1
k & l < ik)

xω·jk+(φt(δk,jk)+l−ik)
δk

(k < m & tk = t0k · · · t
ik−1
k & l ≥ ik)

xω·(k−m+n)+l
δ (k ≥ m)

Note that δk ≤ δ holds for 0 ≤ k < m since αjk
δk

is a bound µ-variable in t.

3 Characterization

3.1 Characterization of Expanded Böhm Trees for Λµ-Terms

For each T ∈ Λµ-BT+, we consider the conditions in Figure 1. The intuitive
meaning of the partial mappings is the following: pTµ(δ) is the number of µ-

abstractions in the prefix of the shnf of tδ. pTλ (δ, k) is the number of λ-abstractions
surrounding the k-th µ-variable in the prefix of the shnf of tδ. bTµ(δ) is the number

of µ-variables in the body part of the shnf of tδ. bTλ (δ, k) is the number of term
arguments delimited by the k-th µ-variable in the body part of the shnf of tδ.
bTλ corresponds to the function φt. Bd

T
µ(δ, k) = ⟨δ′, k′⟩ means that the k-th µ-

variable in the body part of the shnf of tδ is bound at k′-th µ-abstraction in the
prefix of the shnf of t′δ.

3

The conditions are intuitively explained as follows. (1) means that each vari-
able is bound at a position outside of it. (2) and (3) require that, if a variable
occurs in a body part of a shnf, it is bound at a prefix which is not in an
η-expanded part, which means a part obtained by the ηS-expansion and the
fst-reduction. (4) means that, if a λ-variable occurs in an η-expanded part, it
is obtained a fst-reduction for a corresponding µ-variable, and all of the nodes
below it are in η-expanded parts. (5) means that, if a µ-variable is in an η-
expanded part, there is no λ-variable accompanying the µ-variable. (6) means
that, if a µ-variable occurs in an η-expanded part, the µ-variables following it
are obtained by the ηS-expansion.

Theorem 1. For T ∈ Λµ-BT+, there exists a closed Λµ-term t such that T =
BT+

t iff T satisfies all of the conditions in Figure 1.

Proof. (The detailed proof is in [2].)
Let T = BT+

t . By definition, when T(δ) = y, we have

tδ →∗
hλx

0,<i0
δ µα0

δ · · ·µαk−2
δ λx

k−1,<ik−1

δ µαk−1
δ .

(y)t0 · · · tj0αj0
δ0
· · ·αjl−2

δl−2
tω·(l−1) · · · tω·(l−1)+jl−1−1α

jl−1

δl−1
.

Then we define the partial mappings in the condition (0) as follows:

pTµ(δ) = k bTµ(δ) = l

pTλ (δ, n) =

{
in (n < k)

0 (n ≥ k)
bTλ (δ, n) =

{
jn (n < l)

0 (n ≥ l)

BdTµ(δ, n) =

{
⟨δn, jn⟩ (n < l)

⟨δ, n− l + k⟩ (n ≥ l).

They are undefined when T(δ) ↑. They are recursive by definition. It is easy to
see that T satisfies the conditions (0) through (6).

For the other direction, suppose that T ∈ Λµ-BT+ satisfies all of the condi-
tions in Figure 1, and we will construct a term tT such that BT+

tT = T. In the
following, we omit the superscript T for each mapping and term.

We have the encodings of elements of ω, ω2, ∆, BV , and pairs of them in the
λ-calculus. These encodings are overlined. By (0), we have λ-representations of T
and the five partial recursive functions: T, pµ, pλ, bµ, bλ, and Bdµ. Furthermore
we can assume the existence of the following λ-term π:

π δ →∗
h

{
λz.z (T(δ) ↓)
has no hnf (T(δ) ↑)

We define association lists Lλ and Lµ to map correspondences between actual
bound variables and their encodings.

initλ = λz.z [⟨δ, µ⟩ .→ y]@Lλ = λz.(if z = xµ
δ then y else Lz fi)

initµ = λz.z [⟨δ, k⟩ .→ α]@Lµ = λpz.(if p = ⟨δ, k⟩ then (z)α else Lµpz fi)

4

The term t is recursively defined as follows:

t = Θ[] initλ initµ

Θ δLλLµ = π δ (F δ 0 0 (T δ)LλLµ)

F δ k lV LλLµ =

⎧
⎪⎨

⎪⎩

Gδ (bµ δ) 0V LλLµ (pµ(δ) ≥ k)

µα.F δ k + 10V Lλ([⟨δ, k⟩ .→ α]@Lµ) (pλ(δ, k) ≤ l)

λz.F δ k l + 1V ([⟨δ,ω · k + l⟩ .→ z]@Lλ)Lµ (otherwise)

Gδ k lV LλLµ =

⎧
⎪⎨

⎪⎩

LλV (k = 0 & l = 0)

Lµ(Bdµ δ k − 1)(Gδ k − 1 (bλ δ k − 1)V LλLµ) (k > 0 & l = 0)

(Gδ k l − 1V LλLµ)(Θδ :: (ω · k + (l − 1))LλLµ) (l > 0)

Then, we can see that T(δ) = BT+
t (δ) for any δ ∈ ∆. !

3.2 Free λ-Variables

The discussion in the previous subsection can be extended to Λµ-terms with
free λ-variables. We suppose the set of free λ-variables FVλ, which is disjoint
from BVλ. The codomain of Λµ-BT+ is extended to BVλ ∪ FVλ ∪ {⊥}. We
define FVλ(T) = {z ∈ FVλ | T(δ) = z for some δ}, and we require the following
additional condition.

(7) #FVλ(T) < ω
Then, the encoding of the variables are extended to

y =

{
y (y ∈ BVλ)

y (y ∈ FVλ(T)),

which can be defined due to the condition (7). Notice that for any association
list Lλ of λ-variables and y ∈ FVλ, we have Lλ y →∗

h initλ y →h y.

Acknowledgements. This work was supported by Grants-in-Aid for Scientific
Research KAKENHI (C) 15K00012.

References

1. Nakajima, R. Infinite normal forms for the λ-calculus. In Symposium on Lambda-
Calculus and Computer Science Theory, pages 62–82, 1975.

2. Koji Nakazawa. Characterizing trees for Lambda-mu terms. Extended
version of this paper with the proof of the main theorem. Available at
http://www.sqlab.i.is.nagoya-u.ac.jp/~nakazawa/papers/hor2016appendix.pdf.

3. A. Saurin. Standardization and Böhm trees for Λµ-calculus. In Blume, M.,
Kobayashi, N., and Vidal, G., editors, Tenth International Symposium on Func-
tional and Logic Programming (FLOPS 2010), volume 6009 of LNCS, pages 134–
149. Springer, 2010.

5

