Characterizing Trees for Lambda-mu Terms

Koji Nakazawa

Graduate School of Information Science, Nagoya University

Abstract. We give the conditions to characterize B6hm tree structures
which represent terms of the Lambda-mu calculus. This result answers
a question stated in Saurin’s FLOPS paper.

1 Introduction

In [3], Saurin extends the Bohm trees and the expanded Béhm trees, called
Nakajima trees in [3], to the Au-terms. It is a beautiful theoretical result that
we can obtain the (expanded) Bohm trees for Ap just by extending the bound
of lengths of prefixes and arguments to w?, whereas it is w for the A-calculus.
An open problem stated in [3] is on characterization of the tree structures which
represent some Au-terms. For the A-calculus, this problem was solved by Naka-
jima in [1], where he gave some conditions for the expanded Béhm trees and
showed that they give the exact characterization of trees which represents some
A-terms.

In this paper, we extended Nakajima’s result to Apu, and solve Saurin’s open
problem. The idea of the characterizing conditions are almost the same as [1],
and they require that the information of each node is computable, and that all
of nodes except for a finite part are obtained by n-expansion. The conditions for
Ap-calculus become much more complicated than the case of A-calculus, because
we have to manage the correspondence of p-variables in prefixes and bodies.

2 Expanded Bohm Trees of Au-Terms

Definition 1. The Apu-terms are defined as follows:
tysu=a | Axdt | (6)s | pat | (e

Yap is the set of all Ap-terms. X' s the set of all closed Ap-terms. In this
paper, we always suppose every Apu-term is closed with respect to u-variables.
The reduction rules for the Ap-calculus are the following.

(Az.t)s —p, tlz =]

(nat)B =g tla = f]
po(t)o =, t (a & FV (1))
poet =it Ar.pact[(v)a = (v)zal

As in [3], the stream head normal form (shnf) of a Ap-term is
/\CL‘OMQO .)\wn—luan—l.(y)tOBO . tm—lﬂm—l’

where each z* and #/ are finite sequences of A-variables and Ap-terms. For sim-
plicity, we write ¢t —} h for the head reduction followed by zero- or one-step
ns-reduction to a shnf h.

Saurin showed in [3] that the Bohm trees are adapted to the Apu-calculus
by extending the width from w to w?. We consider fully n-expanded form, and
hence each node uniformly has w? children. We call such trees expanded Béhm
trees for the Ap-calculus, which are originally defined by coinduction as follows:

Tu=1| A(xi)z‘ew-(y)(fj)jew,

where A(x;);c02.(y) is called a prefix. Positions of nodes in trees are expressed
by finite lists of elements of w?.

Definition 2. A is the set of all finite lists consisting of elements of w?, that is,
[] € A (empty list), and if § € A and p € w?, then & :: p € A. § < § means that
d is an initial segment of §’. § < ¢’ means § < ¢’ and § # ¢'.

By renaming bound variables, we suppose that bound A-variables in prefixes
are uniformly indexed by an element of A x w? depending on the position where
they are abstracted, that is, we define the set of all bound A variables as BV =

ot |6 € A, u € w?}, and the prefix at the position ¢ is fixed as Azt ------ (y
5 : . 5Ls
with some head variable y, where x§ = x‘g"lzg"”lx‘g"“ -+ -. We use this notation
x} in the following, and another notation xy~/ = ¢ x4 ... :Eg”ﬂ*l.

In order to consider the fst-reduction, we have to remember some information
on bound p-variables during the definition of the expanded Bohm trees of Au-
terms. In the following definition, ¢(d, k) = | means that the prefix of the shnf
at the position § contains a subterm of the form - - -)\mlg’dua’g -+ . Similarly to
BV), we fix the name of bound p-variables depending on the position where they
are abstracted. The set of bound p-variables is BV, = {af | § € A,k € w}.

Then, names of head variables at each position and existence of shnf are
sufficient to characterize expanded Bohm trees.

Definition 3. An ezpanded Béhm tree for Au-calculus is a mapping ¥ from A
to BVy U {L} such that T(6) = L and ¢ > ¢ imply T(¢’) = L. The set of
the expanded Bohm trees is denoted by Au-BTT. We write T(J) 1 to mean
T(9) = L, and T(6) | otherwise.

We can intuitively understand this definition as follows: T(6) = z¥, means
that the head variable in the prefix at ¢ is the u-th variable in the prefix at §’,
and ¥(d) T means that the node at ¢ is L, which represents an unsolvable term,
and we suppose that all nodes below L are indexed by L for simplicity.

Definition 4. For t € X, we define the expanded Bohm tree %‘I;r of t with
auxiliary partial mappings ¢y : A — X4, U{L} and ¢; : A xw — w as follows:

(0) ¥ is recursive, and there exist the following five partial recursive mappings:

— p;,bj; : A — w, the domains of which are {§ € A | T(6) |},

- p3,by : AXw — w, and Bdg : AXw — A X w, the domains of which are
{(0,k) € A x w|T(5) 4}.

(1) T(6) =}, = ¢’ < and Bd},(5,k) = (', k') = &' <6
(2) T(6:: (w-k+1) ="+ &1 < b3 (6,k) = I' < pi(&',K)
(3) Bd;,(6,k) = (6, k') & k < b,(5) = Kk < p,(5)
(4) Bd;;(6,k) = (6, k') & 1 > b5 (8, k) =
— T (w k1) = 20K X (8K +1-b3 (8.1))

.o - 6/
=" >6u(w-k+1) = (6" p) =}, for any p & pi(6") =0& b, (5") =0

(5) P (0,p,(8) +n) =0 and b3 (6, b5 (5) + n) =0 for any n € w
(6) Bd; (8, by (0) +n) = (8,p, (8) + n) for any n € w

Fig. 1. Characterizing Conditions

=t

— If t5 has no shnf, BT,/ (§) = L, and t5 for any § < &’ and ¢;(6”, k) for any
§ < ¢"” and k € w are undefined. _ _

— Ifts =})\:cg’ﬁouag e /\wg_l’Q"‘lua?_l.(y)toaf;g . ~tmflo/::, then

s
BT, (0)=y
ik (k < n)
o0 k)= {0 (k > n)
th 4 ‘ (/c<m&tk:t2~-t};v‘1&z<ik)
tes(o k) = l,‘g’k'.]k"l‘(d’t(ék;]k)"rl_zk) (k<m & t), = t% .. .t;ck—l &1>iy)
m({;ﬁ(k:fmjtn)jtl (k‘ Z m)

Note that §; < ¢ holds for 0 < k < m since ozfsi is a bound p-variable in ¢.

3 Characterization

3.1 Characterization of Expanded Bohm Trees for Ap-Terms

For each T € Au-BT", we consider the conditions in Figure 1. The intuitive
meaning of the partial mappings is the following: pg((S) is the number of u-
abstractions in the prefix of the shnf of 5. p‘f(é, k) is the number of A-abstractions
surrounding the k-th p-variable in the prefix of the shnf of 5. bg(é) is the number
of p-variables in the body part of the shnf of ¢5. b5 (6, k) is the number of term
arguments delimited by the k-th p-variable in the body part of the shnf of ts.
b} corresponds to the function ¢;. Bdf(é7 k) = (&', k') means that the k-th p-
variable in the body part of the shnf of ¢5 is bound at k’-th u-abstraction in the
prefix of the shnf of ¢5.

The conditions are intuitively explained as follows. (1) means that each vari-
able is bound at a position outside of it. (2) and (3) require that, if a variable
occurs in a body part of a shnf, it is bound at a prefix which is not in an
n-expanded part, which means a part obtained by the ng-expansion and the
fst-reduction. (4) means that, if a A-variable occurs in an n-expanded part, it
is obtained a fst-reduction for a corresponding p-variable, and all of the nodes
below it are in 7n-expanded parts. (5) means that, if a p-variable is in an n-
expanded part, there is no A-variable accompanying the p-variable. (6) means
that, if a p-variable occurs in an n-expanded part, the p-variables following it
are obtained by the ng-expansion.

Theorem 1. For T € Apu-BT", there exists a closed Ap-term t such that T =
BT iff T satisfies all of the conditions in Figure 1.

Proof. (The detailed proof is in [2].)
Let T = BT,". By definition, when T(J) = y, we have
—QAx§*11<ik—1lJ/a§:—l.

(y)t° - -tjoag(; . agi:ztw'(lfl) .. 'tw'(lfl)ﬂ“lflaji:.

* 0,<1 0 k
ts =pALs " o - - povg

Then we define the partial mappings in the condition (0) as follows:

p,(0) =k b, (0) =1
i (n<k))in (n <)
p§(57 n) = {0 (n > k) b§(§, n) = {0 (n>1)
(On, jn) (n <1)

T _
Bd, (6,n) = {(5,n—l+k’> (n>1).

They are undefined when T(§) 1. They are recursive by definition. It is easy to
see that T satisfies the conditions (0) through (6).

For the other direction, suppose that T € Au-BT " satisfies all of the condi-
tions in Figure 1, and we will construct a term ¢* such that %‘I} = %T. In the
following, we omit the superscript ¥ for each mapping and term.

We have the encodings of elements of w, w?, A, BV, and pairs of them in the
A-calculus. These encodings are overlined. By (0), we have A-representations of T
and the five partial recursive functions: T, Pus Px, E, by, and Bidu Furthermore
we can assume the existence of the following A-term 7:

v (3(6) 1)
o {has no hnf (F(d) 1)

We define association lists Ly and L, to map correspondences between actual
bound variables and their encodings.

inity = A2z [(0, 1) = y]@QLy = Az.(if 2 = 2 then y else Lz fi)
init, = Az.2 [(0,k) = a]@QL, = Apz.(if p= (3,k) then (2)a else L,pz fi)

The term t is recursively defined as follows:

t = O[]inity init,,
©0L\L, =76 (F600(T0)LAL,)
G4 (b,)0V L\L, (Pu(d) = k)
FORIVIAL, = po.Fok + 10VLA([(5, k) — o]QL,) (px (8, k) < 1)
A2 Fokl+1V([(6,w-k+1) — 2]QLy)L, (otherwise)
LV (k=0&1=0)

GOKIVIAL, ={ L,(Bd, 0k —1)(Gok—1(bxok —1)VL\L,) (k>0&1=0)
(GOkT—1VLA\L,)(O5 == (w-k+ (I — 1))LrL,) (I >0)

Then, we can see that T(§) = BT, (§) for any § € A. O

3.2 Free A-Variables

The discussion in the previous subsection can be extended to Au-terms with
free A-variables. We suppose the set of free A-variables F'V), which is disjoint
from BVy. The codomain of Au-BI" is extended to BVy U FVy U {L}. We
define FVy (%) = {z € FV) | T(0) = = for some J}, and we require the following
additional condition.

(7) #FV) (%) < w
Then, the encoding of the variables are extended to

7= 7 (y€ BW)
y (y € FVA(T)),

which can be defined due to the condition (7). Notice that for any association
list Ly of A-variables and y € F'V), we have Ly y =7 inityy —p .

Acknowledgements. This work was supported by Grants-in-Aid for Scientific
Research KAKENHI (C) 15K00012.

References

1. Nakajima, R. Infinite normal forms for the A-calculus. In Symposium on Lambda-
Calculus and Computer Science Theory, pages 62-82, 1975.

2. Koji Nakazawa. Characterizing trees for Lambda-mu terms. Extended
version of this paper with the proof of the main theorem. Available at
http://www.sqlab.i.is.nagoya-u.ac.jp/ nakazawa/papers/hor2016appendix.pdf.

3. A. Saurin. Standardization and Bohm trees for Ap-calculus. In Blume, M.,
Kobayashi, N., and Vidal, G., editors, Tenth International Symposium on Func-
tional and Logic Programming (FLOPS 2010), volume 6009 of LNCS, pages 134—
149. Springer, 2010.

