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Abstract We propose a new proof system for entailment checking in the separation
logic with general inductive predicates. The proposed system is based on a cyclic-proof
system and using the Unfold-Match-Remove proof strategy. One of the difficulties in
this strategy is to find the predicates which should be unfolded. In order to solve
this problem, we introduce a new inference rule, called the factor rule, which enables
us to factorize the inductive predicates in spatial formulas and to find predicates to
be unfolded in the Unfold-Match-Remove strategy. Our proof system is complete
and decidable when we restrict inductive predicates to linear ones. We also give some
experimental results by a prototype implementation of our proof-search procedure. Our
system proves some challenging examples without the help of any heuristic mechanisms
such as finding cut formulas or lemmas.

1 Introduction

Separation logic [24, 4, 5] is an extension of Hoare logic for the verification of programs manipu-
lating heaps. One of the keys for automated verification systems based on separation logic is to
decide the validity for entailments of formulas in a special class, called symbolic heaps.

In order to deal with programs manipulating recursive data structures such as lists and trees
in separation logic, it is important to consider inductively defined predicates in symbolic heaps.
Our purpose is to obtain a decision procedure for entailments of symbolic heaps with general
inductive definitions. However inductive definitions without any restriction cause undecidability
[3].

Iosif et al. [16] proposed the system SLRDbtw, which is the first decidable system for entail-
ments of symbolic heaps with general inductive definitions. The condition on inductive definitions
imposed in [16] is called the bounded-treewidth condition. The bounded-treewidth condition is one
of the most flexible conditions for decidability.

In contrast to model theoretic approaches such as [16], we choose another approach based on
a proof system, which has several advantages: it is extendable with new rules; it shows reasons
for the output; it may be fast when the input entailment is valid; we easily change it into a
semi-decision procedure with heuristics for proof search. There are some complete and decidable
proof system for separation logic [4, 5], but all of them are not for general inductive definitions,
but for fixed (or hard-coded) predicates. Therefore, it is an important issue to find a class of
inductive predicates which is sufficiently expressive and for which we can achieve complete and
decidable proof system.

Another issue on a proof system which deals with inductive predicates is how induction is rep-
resented. Cyclic-proof systems [8, 9] are suitable for our purpose. In cyclic proofs, the induction



is represented as a cyclic structure, where some open assumptions are allowed as induction hy-
potheses. This mechanism gives us more efficient proof search, since we need not fix an induction
formula in advance. In fact, some systems (explicitly or implicitly) based on cyclic-proof systems
have been proposed for the entailment checking problem for separation logic [8, 9, 12, 25, 26].
However it is not well studied on complete or decidable cyclic-proof systems for separation logic.

This paper proposes a cyclic-proof system for entailment checking for symbolic heaps and a
proof-search procedure for the proof system. Our proof system is complete and decidable when we
restrict the inductive definitions to linear ones. We adopt the Unfold-Match proof-search strategy
in [12] and introduce some new notions and mechanisms: (1) a new class of inductive definitions,
called the cone inductive definitions, which covers sufficiently a large class of inductive definitions
and is suitable for the Unfold-Match strategy, (2) a new rule for spatial factorization, called the
factor rule, to prevent the proof search from getting stuck, and (3) an auxiliary extension of the
language for explicit case analysis. Furthermore, in order to confirm the usefulness of the new
mechanisms, we give a prototype prover based on our proof-search procedure with the factor rule
and show some experimental results.

The class of the cone inductive definitions is introduced as a subclass of the class of the
bounded-treewidth, by imposing an additional condition that the definition body itself guarantees
existentials to be allocated. The cone inductive definition requires that every definition clause of
the inductive predicate P (x,−→y ) contains the singleton heap x 7→ ( ), that is, the heap contains a
memory cell named with x. We call the first argument x a root of P (x,−→y ), since it is the root of a
tree-like structure described by the predicate. One of the simplest examples of the cone inductive
definitions is the following singly-linked list:

ls(x, y) =def x 7→ y ∨ ∃z.x 7→ (z) ∗ ls(z, y).

The cone inductive definitions are still quite expressive, since this class contains doubly-linked
lists, skip lists, nested lists, and so on.

Combining the Unfold-Match strategy to the cone inductive definitions and the cyclic proofs,
we obtain the following strategy. First, unfold predicates of the same root x in both antecedent
and succedent. Next, the existentials of the antecedent are replaced by fresh variables and in-
stantiate the existentials of the succedent by matching. Finally, remove the same x 7→ ( ) in
both antecedent and succedent. We repeat these steps for each subgoal. We call this strategy
Unfold-Match-Remove and write U-M-R for it. This idea is natural and seems to work well. For
example, a proof of the entailment ls(x, y) ∗ ls(y, z) ⊢ ls(x, z) can be found by U-M-R as

....
x 7→ y ∗ ls(y, z) ⊢ ls(x, z)

ls(w, y) ∗ ls(y, z) ⊢ ls(w, z)

x 7→ w ∗ ls(w, y) ∗ ls(y, z) ⊢ x 7→ w ∗ ls(w, z) (4)

∃w.x 7→ w ∗ ls(w, y) ∗ ls(y, z) ⊢ ∃w.x 7→ w ∗ ls(x, z) (3)

∃w.x 7→ w ∗ ls(w, y) ∗ ls(y, z) ⊢ ls(x, z)
(2)

ls(x, y) ∗ ls(y, z) ⊢ ls(x, z)
(1)

,

where we omit the left branch. At (1) and (2), we unfold the predicates of the same root x. At
(3), the existentials are instantiated by matching. At (4), we remove the common x 7→ w from
the both sides. Then, we have the entailment ls(w, y) ∗ ls(y, z) ⊢ ls(w, z) which is the same as the
bottom entailment except renaming, so it is allowed as an induction hypothesis. Hence, the proof
is completed in the cyclic-proof system.

However the U-M-R strategy may get stuck when we cannot find predicates on both sides
which have a common root. For example, the entailment dll(h, t, p, n) ⊢ dllrev(t, h, n, p) is valid
for the following two variants of the doubly-linked lists:

dll(h, t, p, n) =def h = t ∧ h 7→ (p, n) ∨ ∃z.h 7→ (p, z) ∗ dll(z, t, h, n),
dllrev(h, t, p, n) =def h = t ∧ h 7→ (n, p) ∨ ∃z.h 7→ (z, p) ∗ dllrev(z, t, h, n).



However, in a naive version of U-M-R, we cannot find common roots on both sides.
In order to solve this problem, we propose a new inference rule of the spatial factorization,

called the factor rule. The factor rule is given by means of the inductive wands. The inductive
wands represent some segments of heaps represented by inductive predicates, that is, the inductive
wand P—∗iQ represents a subheap of Q which is obtained by removing a heap which satisfies P .
The inductive wands are also predicates defined by cone inductive definitions. By the inductive
wand, we can divide a predicate P (x) in succedent into two predicates Q(y)—∗iP (x) and Q(y),
where we can find the root y which occurs in antecedent as a root. For the above example of dll
and dllrev, the spatial factorization is applied as the following factor rule:

dll(h, t, p, n) ⊢ ∃t′p′n′.(dllrev(h, t′, p′, n′)—∗idllrev(t, h, n, p)) ∗ dllrev(h, t′, p′, n′)
dll(h, t, p, n) ⊢ dllrev(t, h, n, p)

(Factor)
.

Here, the inductive wand dllrev(h′, t′, p′, n′)—∗idllrev(h, t, p, n) is defined by the definition clauses

t′ = t ∧ p′ = h ∧ n′ = n ∧ h 7→ (h′, p)

∨∃z.h 7→ (z, p) ∗ (dllrev(h′, t′, p′, n′)—∗idllrev(z, t, h, n)).

A similar idea to the inductive wand has been proposed as the inductive segment in [2], where
they used it for software verification by abstract interpretation. By the inductive segment, we can
unfold inductive predicates in the reverse direction to find some fixed points in shape analysis. On
the other hand, we will use inductive wands for a different purpose, namely, deciding entailments
of symbolic heaps. We will show the class of cone inductive predicates is closed under inductive
wands. It is not easy to obtain a useful class of inductive definition that is closed under inductive
wands. For example, the class of inductive definitions with bounded treewidth is not closed under
inductive wands. Our results also show that the use of inductive wands keep decidability for
cone inductive definitions. It is not easy either to obtain a decidable class that is closed under
inductive wands, since magic wands often causes undecidability [1]. By this closure property, it
is not necessary to add any special clauses to the definition of semantics of inductive wands.

Furthermore, for completeness and decidability, we extend the succedent to disjunctions and
introduce predicates t ↓ and t ↑, which mean that t is in the heap and t is not in the heap
respectively.

Our proof system is complete and decidable when we restrict cone inductive definitions to
linear ones, that is, every definition clause of P (x,−→y ) has at most one atomic spatial formula
except x 7→ ( ). The singly-linked and the doubly-linked lists are linear. For those structures, the
factor rule give a complete proof system in a uniform way, whereas every existing proof system
such as [4, 19] contains only one hard-coded inductive predicate and needs nontrivial rules, called
the unroll-collapse.

The authors have a paper [28] deeply related to this paper. The proof system in [28] is the full
system including the spatial factorization. Note that the inductive wands are called the strong
wands in [28]. The completeness and decidability of the system are proved for the general cone
inductive definitions, but this system needs many other mechanisms and is very complicated.
This paper focuses on the details of the spatial factorization, which is one of the essential ideas in
[28]. Moreover, this paper shows that the spatial factorization is sufficient to prove completeness
and decidability if we restrict the predicate to linear ones.

Many entailment checkers for symbolic heaps with inductive definitions have been discussed.
Several of them do not have general inductive definitions and have only hard-coded inductive
predicates [4, 5, 13, 21, 22]. The entailment checkers for general inductive definitions are studied
in [8, 9, 11, 12, 14, 15, 16, 17, 23, 27]. The systems in [14, 15, 16, 17, 23, 27] are all model
theoretic. The systems in [8, 9, 12] use cyclic proofs, but neither of them is complete. The system
in [11] is based on ordinary sequent calculus and is not complete.

We give the language and the semantics of our proof system in Section 2. The inductive wand
and the factor rule are introduced in Section 3, and the proof-search procedure with the factor



rule is introduced in Section 4. In Section 5, we prove that our proof system is complete and
decidable for linear cone inductive predicates. The experimental results are given in Section 6.
We conclude in Section 7.

2 Symbolic Heaps with Inductive Definitions

This section defines the symbolic heaps which we consider in our proof system.

We will use vector notation −→x to denote a sequence x1, . . . , xk for simplicity. Sometimes we
will also use this notation to denote a set for simplicity. We write ≡ for the syntactical equivalence.

2.1 Language

The language of our system is based on that for the ordinary symbolic heaps in separation
logic with inductively defined predicates. We consider only address values and no arithmetic on
them. We have countably many first-order variables x, y, z, . . . and inductive predicate symbols
P,Q,R, . . .. We use P to denote either an inductive predicate or the point-to predicate 7→. When
P is 7→, P(t,

−→
t ) denotes t 7→ −→

t . We sometimes write P(t) or P for P(t,
−→
t ).

Definition 2.1 (Base language) The base language is given as follows. The terms are defined
as t, u, · · · ::= nil | x, where nil is a first-order constant. The pure formulas, the spatial formulas,
and the symbolic heaps are defined as follows.

Π,Π′ ::= t = u | t ̸= u | Π ∧Π′ (pure formula),

Σ ::= emp | P(t,
−→
t ) ∗ Σ (spatial formula),

ϕ ::= ∃−→z .Π ∧ Σ (symbolic heap).

Here we assume that the length of
−→
t in t 7→ −→

t is fixed to some Nc. The term t in P(t,
−→
t ) is

called a root. For sets S and S′ of terms, we define the pure formula ( ̸= (S, S′)) =
∧
{t ̸= t′ |

t ∈ S, t′ ∈ S′, t ̸≡ t′}, and (̸= S) = ( ̸= (S, S)). For I = {1, · · · , n}, we write ∗i∈IPi(ti,
−→
t i) for

P1(t1,
−→
t 1) ∗ · · · ∗ Pn(tn,

−→
t n). We sometimes omit the index set I as ∗iPi(ti,

−→
t i). An inductive

definition system is a finite set of inductive definitions of the form

P (x,−→y ) =def

∨
i∈I

ϕi(x,
−→y ) (inductive definition),

where the definition clauses ϕi(x,
−→y ) must be of the form

ϕi(x,
−→y ) ≡ ∃−→z .Π ∧ x 7→ (−→u ) ∗ ∗j∈JPj(zj ,

−→
t j) (definition clause),

where FV(RHS) ⊆ {x,−→y }, and satisfy the conditions

−→z = {zj | j ∈ J} (strong connectivity) and −→z ⊆ −→u (decisiveness).

We write ϕ⇒ P (x,−→y ) if ϕ is a definition clause of P (x,−→y ).

We call the inductive definition under these conditions cone inductive definition. These con-
ditions imply the bounded-treewidth condition in [16]. The decisiveness guarantees that the cell
at address x decides the content of every existential variable, and is similar to the constructively
valued condition in [10].

An example that is covered by the bounded-treewidth condition but is not covered by the
cone inductive definitions is the tree with parent pointers and linked leaves predicate tll given in
[16].



2.2 Extended Language

We extend the language with the auxiliary predicates x ↑ and x ↓, which intuitively mean “x is
not allocated” and “x is allocated”, respectively. For a finite set X of variables, we write X ↑
and X ↓ for

∧
{x ↑ | x ∈ X} and

∧
{x ↓ | x ∈ X}, respectively.

Definition 2.2 (Extended language) We extend the spatial formulas of the base language as
follows.

∆ ::= P(t,
−→
t ) ∧X ↓ (extended spatial atom),

Γ ::= emp | ∆ ∗ Γ (extended spatial formula).

The entailments are of the form Y ↑ ∧Π ∧ Γ ⊢
−→
ϕ . We use ψ to denote an antecedent of an

entailment.

For saving space, we identify some syntactical objects that have the same meaning, namely,
we use implicit transformation of formulas by using the following properties: ∧ is commutative,
associative, and idempotent; ∗ is commutative, associative, and has the unit emp; = and ̸= are
symmetric.

For the case analysis on ↓, we prepare the following operator to distribute ↓.
Definition 2.3 We define ⇓ (Γ, X) and ⇓ (ψ,X) as follows.

⇓ (∗i∈I∆i, X) ={∗i∈I(∆i ∧Xi ↓) | X = ⊎i∈IXi},
⇓ (Y ↑ ∧Π ∧ Γ, X) ={Y ↑ ∧Π ∧ Γ′ | Γ′ ∈ ⇓ (Γ, X)},

where ⊎i∈IXi is the disjoint union of {Xi | i ∈ I}.
Note that ψ ∧X ↓ is equivalent to the disjunction of ⇓ (ψ,X).

Definition 2.4 (Roots and cells) We define Roots(Γ) as the set of variables which occur at
the first argument of some P in Γ. Roots(Σ) is similarly defined. We define Cells(Γ) as the set
of variables which occur accompanied by ↓ in Γ.

2.3 Semantics

We define the following structure: Val = N , Locs = {x ∈ N |x > 0}, Heaps = Locs →fin ValNc ,
Stores = Vars → Val. Each s ∈ Stores is called a store. Each h ∈ Heaps is called a heap, and
Dom(h) is the domain of h. We write h = h1 + h2 when Dom(h1) and Dom(h2) are disjoint and
the graph of h is the union of those of h1 and h2. A pair (s, h) is called a heap model, which means
the current memory state. The value s(x) means the value of the variable x in the model (s, h),
and it is naturally extended to the domain Vars ∪ {nil} as s(nil) = 0. Each value a ∈ Dom(h)
means an address, and the value of h(a) is in the memory cell of address a in the model (s, h).
We suppose each memory cell has Nc elements as its content. For a formula F we define the
interpretation s, h |= F as follows.

s, h |= t1 = t2 if s(t1) = s(t2), s, h |= t1 ̸= t2 if s(t1) ̸= s(t2),
s, h |= x ↑ if s(x) ̸∈ Dom(h), s, h |= x ↓ if s(x) ∈ Dom(h),
s, h |= F1 ∧ F2 if s, h |= F1 and s, h |= F2, s, h |= emp if Dom(h) = ∅,
s, h |= t 7→ (t1, . . . , tNc) if Dom(h) = {s(t)} and h(s(t)) = (s(t1), . . . , s(tNc)),
s, h |= F1 ∗ F2 if s, h1 |= F1 and s, h2 |= F2 for some h1 + h2 = h,

s, h |= P 0(
−→
t ) does not hold,

s, h |= P k+1(
−→
t ) if s, h |= ϕ[P := P k] for some definition clause ϕ of P (

−→
t ),

s, h |= P (
−→
t ) if s, h |= Pm(

−→
t ) for some m,

s, h |= ∃z.F if s[z := b], h |= F for some b ∈ Val.

We define ψ |=
−→
ϕ as ∀(s, h)(s, h |= ψ implies ∃ϕi ∈

−→
ϕ (s, h |= ϕi)). The entailment ψ ⊢

−→
ϕ is said

to be valid if ψ |=
−→
ϕ holds.
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Figure 1. Inductive wand

3 Inductive wand and spatial factorization

In this section, we will define the inductive wands, by which we give an inference rule called the
factor rule for the spatial factorization.

Under the conditions of the cone inductive definitions, a heap model satisfying a predicate
and an unfolding tree of the predicate correspond naturally, since any memory cell in a heap
satisfying P corresponds to the root of some predicate Q occurring in an unfolding tree of P .
Therefore, if a heap model (s, h) satisfies P and a cell with the name x is allocated in h, that is, if
s, h |= P ∧ x ↓, then s(x) is a root of a subheap h′ ⊆ h satisfying some Q in the unfolding tree of
P . The point is that the difference h− h′ can be also represented by some inductive predicate R,
whose inductive definition is obtained by removing the occurrence of Q from the definition clauses
of P . We call this predicate R the inductive wand Q—∗iP . Then, s, h |= x ̸= y ∧ P (y) ∧ x ↓ iff
s, h |= (Q(x)—∗iP (y)) ∗Q(x) for some predicate Q which can occur in an unfolding tree of P (as
Figure 1). By this property, we can factorize a predicate, and expose the cell named with x.

3.1 Inductive wand

We define the inductive wand Q—∗iP for inductive predicates P and Q where the definition of P
recursively depends on Q. The inductive wand is not introduced as a logical connective, but as
an additional inductive predicate. Q(y)—∗iP (x) plays a similar role to the ordinary magic wand
Q(y)—∗P (x), but it is stronger than the ordinary one. Note that the class of cone inductive
definitions is closed under the inductive wands.

We write Pr for the set of the original predicate symbols, and Pr is extended with inductive
wands Q—∗iP , where Q ∈ Pr and P may be another inductive wand. In the following, P,Q, · · ·
denote predicate symbols extended by the inductive wand. When the arities of P and Q are
nP and nQ, respectively, the arity of Q—∗iP is nP + nQ. We write Q(v,−→w )—∗iP (x,−→y ) for
(Q—∗iP )(x,−→y , v,−→w ), and hence the root of Q(v,−→w )—∗iP (x,−→y ) is x.

Definition 3.1 The set Dep(P ) of predicate symbols in Pr for P ∈ Pr is the least set satisfying
the following: (i) If Q ∈ Pr occurs in some definition clause of P , then Q ∈ Dep(P ). (ii) If
P1 ∈ Dep(P2) and P2 ∈ Dep(P3), then P1 ∈ Dep(P3). We extend the domain of Dep with the
inductive wand by Dep(Q—∗iP ) = Dep(P ).

Definition 3.2 For Q ∈ Dep(P ), the definition clauses of Q(v,−→w )—∗iP (x,−→y ) are as follows.

1. For each ∃−→z .Π ∧ x 7→ (−→u ) ∗Q(zQ,
−→
t Q) ∗ Σ ⇒ P (x,−→y ), we add

∃(−→z − zQ).(
−→w =

−→
t Q ∧Π ∧ x 7→ (−→u ) ∗ Σ)[zQ := v].

to the definition clauses of Q(v,−→w )—∗iP (x,−→y ).
2. For each ∃−→z .Π ∧ x 7→ (−→u ) ∗ ∗l∈LPl(zl,

−→
t l) ⇒ P (x,−→y ) and i ∈ L such that Q ∈ Dep(Pi),

we add

∃−→z .Π ∧ x 7→ (−→u ) ∗ (Q(v,−→w )—∗iPi(zi,
−→
t i)) ∗ ∗l ̸=i,l∈LPl(zl,

−→
t l).

to the definition clauses of Q(v,−→w )—∗iP (x,−→y ).
If the definition clause contains two or more occurrences of Q, then we have one definition

clause of the form in 1 for each occurrence.



Inductive-wand elimination (Lemma 3.4):
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Figure 2. Inductive-wand elimination and introduction

Example 3.3 For the singly-linked list

ls(x, y) =def x 7→ y ∨ ∃z.x 7→ (z) ∗ ls(z, y),

the inductive wand ls—∗ils is defined by the following clauses.

ls(v, w)—∗ils(x, y) =def w = y ∧ x 7→ (v)

∨∃z.x 7→ (z) ∗ (ls(v, w)—∗ils(z, y)).

Here, both clauses are generated from the second clause of ls: the first clause is added by 1 of
Definition 3.2, and the second clause is added by 2.

The inductive wand is a stronger variant of the magic wand, that is, P—∗iQ |= P—∗Q always
holds. However, the converse is not necessarily true. For example, the empty heap satisfies
ls(x, y)—∗ls(x, y), but does not satisfy ls(x, y)—∗ils(x, y), since any inductive wand is defined by
the cone inductive definition, and hence a heap satisfying ls(x, y)—∗ils(x, y) contains at least one
memory cell. Furthermore, we have no definition clause for P—∗iQ when P ̸∈ Dep(Q), and then
P—∗iQ means false.

We write Q1, . . . , Qm—∗iP for Q1—∗i(· · ·—∗i(Qm—∗iP ) · · · ). Intuitively, Q1, . . . , Qm—∗iP
represents a heap obtained by removing subheaps satisfying Q1, . . . , Qm from a heap satisfying

P . We also use the notation
−→
Q—∗iP . If

−→
Q is empty,

−→
Q—∗iP denotes P . We can show that

difference of the order of predicates in
−→
Q does not change the meaning of

−→
Q—∗iP . Hence, in the

following, we consider
−→
Q in

−→
Q—∗iP as a set, and

−→
Q1 ⊎

−→
Q2 denotes the disjoint union of

−→
Q1 and−→

Q2.

In the following, we show some fundamental property of the inductive wands.

For the inductive wands, the following hold: (i) (Q(y,−→w )—∗iP (x,−→z )) ∗Q(y,−→w ) |= P (x,−→z ),
and (ii) x ̸= y ∧ y ↓ ∧P (x,−→z ) |= {∃−→w .(Q(y,−→w )—∗iP (x,−→z )) ∗Q(y,−→w ) | Q ∈ Dep(P )}. Since we
want as a precise proof-search procedure as possible, we consider the disjunction of all possible
Q ∈ Dep(P ). These properties are generalized as the following lemmas, which are depicted as
Figure 2.

Lemma 3.4 (Inductive-wand elimination) We have

(Q(y,−→w )—∗iP (x,−→z )) ∗ (
−−−−−→
R(v,−→u )—∗iQ(y,−→w )) |=

−−−−−→
R(v,−→u )—∗iP (x,−→z ).

Lemma 3.5 (Inductive-wand introduction) We have

x ̸= y∧y ↓ ∧(
−−−−−→
R(v,−→u )—∗iP (x,−→z )) |= {∃−→w .(Q(y,−→w ),

−−−−−−−→
R1(v1,

−→u1)—∗iP (x,−→z ))∗(
−−−−−−−→
R2(v2,

−→u2)—∗iQ(y,−→w )) |
−→
R =

−→
R 1 ⊎

−→
R 2, Q ∈ Dep(P ),

−→
R 2 ⊆ Dep(Q)}.



3.2 Spatial factorization

The rule (Factor) is the following.

ψ ⊢
−→
ϕ ,Fact(ϕ, y)

ψ ⊢
−→
ϕ , ϕ

(Factor)
,

where the auxiliary functions are defined as

Factaux(
−−−−−→
R(u,−→u )—∗iP (t,−→t ), y) =

{∃−→w .(
−−−−−−−→
R1(u1,

−→u 1), Q(y,−→w )—∗iP (t,−→t )) ∗ (
−−−−−−−→
R2(u2,

−→u 2)—∗iQ(y,−→w )) |
−−−−−→
R(u,−→u ) =

−−−−−−−→
R1(u1,

−→u 1) ⊎
−−−−−−−→
R2(u2,

−→u 2), Q ∈ Dep(P ),
−→
R 2 ⊆ Dep(Q), −→w fresh},

Fact(∃−→v .Π ∧ ∗j∈JPj , y) = {∃−→v −→w .Π ∧ (∗j∈J−{i}Pj) ∗ Σ |
i ∈ J , Pi is not 7→, ∃−→w .Σ ∈ Factaux(Pi, y).}

When
−→
R is empty, the definition of Factaux means

Factaux(P (t,
−→
t ), y) = {∃−→w .(Q(y,−→w )—∗iP (t,−→t )) ∗Q(y,−→w ) | Q ∈ Dep(P ), −→w fresh},

that is, we can factorize P by (Factor) into two parts Q—∗iP and Q and we can find the hidden
root y.

The soundness of (Factor) is proved by Lemma 3.4.

Proposition 3.6 (Soundness of factor) If ψ |=
−→
ϕ ,Fact(ϕ, y), then ψ |=

−→
ϕ , ϕ.

4 Inference rules and proof search

4.1 Proof system

The inference rules are summarized in Figure 3. The rule (emp) is an axiom, where the spatial
parts on both sides are emp. The conclusion is always valid since the set Val is infinite. For the rule
(Unsat), note that the satisfiability problem for the extended language is decidable [28]. The rule
(Case↑↓) is for case analysis on x ↑ and x ↓. For x ↓, we also distribute x ↓ over the ∗-conjunction.
This rule is sound since |= x ↑ ∨x ↓ always holds. The rule (CaseEq) is for case analysis on = and
̸=. The rule (= L) removes substitution by equality. The rules (∧L↑), (∧L↓), and (∧Lp) are usual
∧-introduction rules for antecedent. The rule (∃R) is the usual ∃-introduction rule for succedent.
The rule (CaseR) is for case analysis in the succedent. (Factor) is for the spatial factorization, and
the soundness is proved in the previous section. The rule (PredL) is for folding and case analysis
for a predicate P in the antecedent. Here, we also consider the case analysis on distribution of
X ↓ to the spatial atoms in Σ. In the rule (PredR), we fold subformulas in the succedent matched
to definition clauses of the predicate P . Note that we consider all the definition clauses in the
succedent as the disjuncts. The rule ( 7→=) is a usual ∧-elimination rule. The rule (∗ 7→) adds
7→-predicates to both sides. For any (s, h), s, h |= ψ ∗ x 7→ (−→u ) implies that the subheap of h
satisfying ψ does not contain the location x, and hence it satisfies x ↑. Therefore, this rule is
sound.

We use the same bud-companion relation in ordinary cyclic proofs [7], but for the global trace
condition, we count the number of the rule (∗ 7→) instead of the case rule.

Definition 4.1 (Proofs) 1. A pre-proof is a finite proof tree constructed by the rules in Fig. 3
associated with a mapping assigning each non-axiom leaf, called a bud, to an inner node with the
same entailment, called a companion.

2. A proof is defined as a pre-proof such that, for any bud, its companion lies on the path
from the bud to the root of the pre-proof, and every path segment between a bud and its companion
contains at least one rule instance of (∗ 7→).

Theorem 4.2 (Soundness) If ψ ⊢
−→
ϕ holds, then we have ψ |=

−→
ϕ .



(Π′ contains only x ̸= t for x ∈ −→x and x ̸≡ t)

emp ⊢ ∃−→x .Π′ ∧ emp,
−→
ϕ

(emp)
(ψ unsat)

ψ ⊢
−→
ϕ

(Unsat)

x ↑ ∧ψ ⊢
−→
ϕ ψ′ ⊢

−→
ϕ (∀ψ′ ∈⇓ (ψ, {x}))

ψ ⊢
−→
ϕ

(Case ↑↓)
t = t′ ∧ ψ ⊢

−→
ϕ t ̸= t′ ∧ ψ ⊢

−→
ϕ

ψ ⊢
−→
ϕ

(CaseEq)

ψ[x := t] ⊢
−→
ϕ [x := t]

x = t ∧ ψ ⊢
−→
ϕ

(= L)
ψ ⊢

−→
ϕ

x ↑ ∧ψ ⊢
−→
ϕ

(∧L↑)
ψ ∗ P ⊢

−→
ϕ

ψ ∗ (P ∧ x ↓) ⊢
−→
ϕ

(∧L↓)
ψ ⊢

−→
ϕ

Π ∧ ψ ⊢
−→
ϕ

(∧Lp)

ψ ⊢
−→
ϕ

ψ ⊢
−→
ϕ , ϕ

(∨R)
ψ ⊢

−→
ϕ , ϕ[w := t]

ψ ⊢
−→
ϕ , ∃w.ϕ

(∃R)
t ̸= t′ ∧ ψ ⊢

−→
ϕ , ϕ

t ̸= t′ ∧ ψ ⊢
−→
ϕ , t ̸= t′ ∧ ϕ

(∧R)
ψ ⊢

−→
ϕ , ϕ

ψ ⊢
−→
ϕ , t = t ∧ ϕ

(TrivR)

ψ ⊢ ∃−→w .t ̸= t′ ∧Π ∧ Σ,
−→
ϕ ψ ⊢ ∃−→w .t = t′ ∧Π ∧ Σ,

−→
ϕ

ψ ⊢ ∃−→w .Π ∧ Σ,
−→
ϕ

(CaseR)

ψ ⊢
−→
ϕ (θ is a substitution)

ψθ ⊢
−→
ϕ θ

(Subst)
ψ ⊢

−→
ϕ ,Fact(ϕ, y)

ψ ⊢
−→
ϕ , ϕ

(Factor)

Π ∧ ψ ∗ Γ ⊢
−→
ϕ (∀Γ ∈ ∪{⇓ (Σ, X) | ∃−→z .Π ∧ Σ ⇒ P (x), −→z is fresh})

ψ ∗ (P (x) ∧X ↓) ⊢
−→
ϕ

(Pred L)

ψ ⊢
−→
ϕ , {∃−→v −→z .Π ∧Π′ ∧ Σ ∗ Σ′ | ∃−→z .Π′ ∧ Σ′ ⇒ P (x,

−→
t )}

ψ ⊢
−→
ϕ , ∃−→v .Π ∧ Σ ∗ P (x,

−→
t )

(Pred R)

ψ ∗ x 7→ (−→u ) ⊢
−→
ϕ , ∃−→z .Π ∧ −→u = −→v ∧ Σ ∗ x 7→ (−→v )

ψ ∗ x 7→ (−→u ) ⊢
−→
ϕ , ∃−→z .Π ∧ Σ ∗ x 7→ (−→v )

(7→=)
x ↑ ∧ψ ⊢ (∃zi.Πi ∧ Σi)i

ψ ∗ x 7→ (−→u ) ⊢ (∃zi.Πi ∧ Σi ∗ x 7→ (−→u ))i
(∗ 7→)

The operation ⇓ in (Case↑↓) and (PredL) is introduced in Definition 2.3. The definition of Fact in (Factor) is given in Section

3.2.

Figure 3. Inference Rules

4.2 Proof-search procedure

In the following subsections, we describe our proof-search procedure, which follows the Unfold-
Match-Remove strategy. Our proof-search procedure consists of two parts: first, we apply the
initialization phase, given in Section 4.3, and then repeat the main phase, given in Section 4.4.

In the initialization phase, we do some case analyses (steps 1 and 2), some trivial termination
checks (steps 3 and 6), and normalization (steps 4, 5 and 7). After the initialization, we obtain

some entailments
−→
J for a given input.

The inputs and the outputs of the main phase are sets of pairs (J,H) of an entailment J , called

a subgoal, and a set H of entailments, called a history. For the output
−→
J of the initialization, we

run the main phase with the input {(J, {J}) | J ∈
−→
J }. In the main phase, we unfold predicates

on both sides with a common root. If we cannot find any common root, we apply the factor rule
(step 9), and then we obtain a common root. At the end of the main phase (step 15), we check
a cycle by comparing the subgoal and the entailments in the history. If we find a companion, we
finish this subgoal. For each remaining subgoal, we add the subgoal to the history, and repeat
the main phase. Every subgoal in outputs of the initialization and the main phases is in some
normal form, which is defined in the next section.

If all subgoals successfully finish in the unsat check (step 3), the termination check (step 6), or
the cycle check (step 15), the procedure stops and answers VALID. If one of subgoals stops with
FAIL in the termination check (step 6) or the succedent of one of the subgoals becomes empty by
the rule (∨R) at the disjunct root check (step 5), the procedure stops and answers FAIL.

4.3 Initialization

The initialization phase consists of the following steps 1–7. Let J0 be the input entailment.

1. [Case analysis ↑ / ↓] For each x ∈ FV(J0), repeat (Case↑↓) to make cases with respect



to x ↑ and x ↓. Then, we obtain subgoals
−→
J 1.

2. [Case analysis = / ̸=] For each J ∈
−→
J 1, repeat (CaseEq) to make cases with respect to

t = t′ and t ̸= t′ for all pairs of elements in FV(J) ∪ {nil} except for t ≡ t′. Then, we obtain

subgoals
−→
J 2.

3. [Unsat check] For each ψ ⊢
−→
ϕ ∈

−→
J 2, if ψ is unsatisfiable, finish this case by applying

(Unsat). Let
−→
J 3 be the remaining subgoals.

4. [Pure check] For each subgoal ψ ⊢
−→
ϕ ∈

−→
J 3, do the following 4.1–4.3. Then, we obtain

subgoals
−→
J 4.

4.1. Repeat (= L) for each x = y in ψ until the antecedent contains no =. Let J4.1 be the
result. Then, the pure part of the antecedent of J4.1 is ( ̸= (FV(J4.1) ∪ {nil})).

4.2. For every ∃x.x = t∧Π∧Σ in the succedent of J4.1, replace it to (Π∧Σ)[x := t] by (∃R).
Then, repeat (∧R), (TrivR) until these rules cannot be applied. Let J4.2 be the result.

4.3. Let ψ ⊢
−→
ϕ ≡ J4.2. Remove all ϕ ∈

−→
ϕ containing t = t′ such that t ̸≡ t′ by repeating

(∨R). Then, the pure parts in the succedent contain only x ̸= t′ such that x is bound by ∃.
5. [Disjunct root check] For each ψ ⊢

−→
ϕ ∈

−→
J 4, repeat (∨R) to remove all ϕ ∈

−→
ϕ such that

either (1) ϕ contains two or more spatial atoms with the same root, (2) ϕ contains a root variable

which is not in Roots(Γ) ∪ Cells(Γ), or (3) ϕ contains a predicate whose root is nil. Let
−→
J 5 be

the resulting subgoals.

6. [Termination check] For each ψ ⊢
−→
ϕ ∈

−→
J 5 such that the spatial part of ψ is emp, check

the following. If there is ϕ ∈
−→
ϕ whose spatial part is emp, finish this case successfully by applying

(∧L↓), (∧Lp), and (emp). Otherwise, stop the procedure with FAIL. Let
−→
J 6 be the remaining

subgoals.

7. [Normalization] For each subgoal ψ ⊢
−→
ϕ ∈

−→
J 6, do the following 7.1–7.4. Then we obtain

subgoals
−→
J 7.

7.1. Let Γ be the spatial part of ψ. For each ϕ = ∃−→w .Π∧Σ ∈
−→
ϕ , w ∈ −→w , and t ∈ FV(Γ)∪{nil}

such that w ̸= t ̸∈ Π, replace ϕ to two disjuncts ∃−→w .w ̸= t ∧ Π ∧ Σ and ∃−→w − w.(Π ∧ Σ)[w := t]
by (CaseR), (∃R), and (TrivR). Repeat it until Π = ( ̸= (FV(Γ) ∪ −→w ∪ {nil},−→w )) holds for every
disjunct ∃−→w .Π ∧ Σ. Then, we obtain a subgoal J7.1.

7.2. Let Y ↑ ∧Π ∧ Γ ⊢ {∃−→w i.(Πi ∧ Σi)}i ≡ J7.1. Repeat (∧Lp) and (∧L↑) to remove all

x ↑∈ Y ↑ and x ̸= t ∈ Π such that x ̸∈ FV(Γ, {Σi}i). Then, for each P(x,
−→
t ) ∧ x ↓ in Γ, remove

x ↓ by (∧L↓). Then, we obtain a subgoal J7.2.

7.3. Repeat (∃R) to remove all ∃x in the succedent of J7.2 such that x does not occur in its
body. Then, we obtain a subgoal J7.3.

7.4. Let Y ↑ ∧Π ∧ Γ ⊢
−→
ϕ ≡ J7.3. For each pair of disjuncts ϕ, ϕ′ ∈

−→
ϕ , if it satisfies the

following condition (*), remove ϕ′ by applying (∨R): (*) there is a variable renaming θ such that
ϕ′ ≡ ϕθ, Dom(θ) ⊆ Y , and Dom(θ) ∩ FV(Γ) = ∅. Repeat this step until there is no such pair.

4.4 Main loop

After the initialization, we repeat the main phase, which consists of the following steps 8–15. For

the output
−→
J , we run the main phase with the input {(J, {J}) | J ∈

−→
J }. During the main phase,

when two or more subgoals are generated from one subgoal, the history is copied to each subgoal.
In the following, we omit the histories since they are changed only at the last step (step 15) of
the main phase.

For every path of a pre-proof constructed in the main phase, if the procedure does not fail
during processing the path, either it reaches a leaf or it contains a rule instance of (∗ 7→) (step
13). Hence, if we obtain a pre-proof by the procedure, it is a proof.

Let
−→
J 0 be the subgoals of the input of the main phase.

8. [Common root] For each ψ ⊢ (ϕi)i ∈
−→
J 0, if the set Roots(ψ) ∩ (∩iRoots(ϕi)) not empty,

choose x in this set and skip the step 9 for this subgoal. Otherwise, choose x ∈ Roots(ψ) and do



the step 9 for this subgoal.

9. [Spatial factorization] For each ψ ⊢ (ϕi)i ∈
−→
J 0 such that we chose x ∈ Roots(ψ) in the

latter case of step 8, apply (Factor) for each ϕi such that x ̸∈ Roots(ϕi). Then, we obtain the

subgoals
−→
J 9. Note that, for each ψ ⊢ (ϕi)i ∈

−→
J 9, we have x ∈ Roots(ψ) ∩ (∩iRoots(ϕi)).

10. [Unfolding] For each J ∈
−→
J 9, apply (PredL) to the predicate with the root x in the

antecedent, and then we obtain subgoals
−→
J ′

10. For each J ∈
−→
J ′

10, apply (PredR) to all of the
predicates with the root x in the disjuncts of the succedent to generate new disjuncts. Then, we

obtain the subgoals
−→
J 10.

11. [Matching] For each J ∈
−→
J 10, apply ( 7→=) for all disjuncts. Then, we obtain the

subgoals
−→
J 11.

12. Let
−→
J 1 be

−→
J 11, and do the steps 2–5 of the initialization. Then, we obtain the subgoals−→

J 12.

13. [Removing] Note that, for any ψ ⊢ (ϕi)i ∈
−→
J 12, every x 7→ −→

t in ϕ is identical to the
x 7→ −→u in ψ. Remove these 7→ predicates by (7→ ∗), and add x ↑ in the antecedent. Then, we

obtain the subgoals
−→
J 13

14. Let
−→
J 5 be

−→
J 13, and do the steps 6–7 of the initialization phase. Then, we obtain the

subgoals
−→
J 14.

15. [Cycle check] For each J ∈
−→
J 14, if J is obtained by substitution from an entailment in

the history, finish this case successfully. Otherwise, add J to the history.

Then, repeat the main phase with the remaining subgoals.

4.5 An example of proof search

We give an example to see how our procedure works.

Example 4.3 We show how the entailment dll(h, t, p, n) ⊢ dllrev(t, h, n, p) is proved.

The initialization produces many cases, and we consider one of the most typical cases as the
input of the main loop, which is the following.

(̸= {h, t, nil}) ∧ dll(h, t, nil,nil) ∧ t ↓ ⊢ dllrev(t, h, nil, nil).

There is no common root, so we apply (Factor), and then we have

(̸= {h, t, nil}) ∧ dll(h, t, nil,nil) ∧ t ↓⊢
∃t′p′n′.(dllrev(h, t′, p′, n′)—∗idllrev(t, h, nil, nil)) ∗ dllrev(h, t′, p′, n′).

By (PredL), we obtain two cases, but the case for the first definition clause of dll is unsat, so we
omit this case. By (PredR), we obtain

(̸= {h, t, nil}) ∧ h 7→ (nil, z) ∗ dll(z, t, h, nil) ∧ t ↓⊢
∃t′p′n′.h = t′ ∧ (dllrev(h, t′, p′, n′)—∗idllrev(t, h, nil,nil)) ∗ h 7→ (n′, p′),

∃t′p′n′z′1.(dllrev(h, t′, p′, n′)—∗idllrev(t, h, nil,nil)) ∗ h 7→ (z′1, p
′) ∗ dllrev(z′1, t′, h, n′).

By matching, removing, and normalization (steps 11–14), we have the following.

h ↑ ∧( ̸= {h, t, nil}) ∧ dll(t, t, h, nil) ⊢ dllrev(h, h, t, nil)—∗idllrev(t, h, nil, nil),
h ↑ ∧( ̸= {h, t, z, nil}) ∧ dll(z, t, h, nil) ∧ t ↓⊢ dllrev(h, h, z, nil)—∗idllrev(t, h, nil,nil).

The procedure will halt with the answer VALID as follows. The first subgoal is proved without
induction, since dll(t, t, h, nil) is equivalent to t 7→ (h,nil), which implies the succedent. For the



second subgoal, (Factor) is applied again during the next execution of the main loop. Then, we
obtain

∃t′p′n′.(dllrev(z, t′, p′, n′)—∗idllrev(t, h, nil, nil)) ∗ (dllrev(h, h, z, nil)—∗idllrev(z, t′, p, n′)),

as a disjunct in the succedent, and unfold the second inductive wand. After some repetitions of
the main loop (the repeat count is 5 in the experiment shown in Section 6), we will find a cycle
with the bud entailment

{z′, h} ↑ ∧(̸= {h, t, z′, v, nil}) ∧ dll(v, t, z′,nil) ∧ t ↓⊢dllrev(z′, h, v, nil)—∗idllrev(t, h, nil, nil),

where dll(v, t, z′,nil) represents heaps obtained by removing some “first” cells (from h to z′) from
dll(h, t, nil, nil), and it corresponds to dllrev(z′, h, v, nil)—∗idllrev(t, h, nil, nil), which represents
heaps obtained by removing some “last” cells (from z′ to h) from dllrev(t, h, nil, nil).

5 Completeness and decidability for linear cone inductive pred-
icates

In this section, we show that our proof system is complete and decidable when we restrict inductive
predicates to linear ones. A cone inductive definition is said to be linear if its definition clauses
are of the form either Π ∧ x 7→ (

−→
t ) or ∃z.(Π ∧ x 7→ (

−→
t ) ∗ Q(z,−→u )) with z ∈ −→

t . All of the
inductive predicates mentioned in this paper, including the singly-linked and the doubly-linked
lists, are linear. It is easy to see that the class of the linear cone inductive definitions is closed
under construction of the inductive wands.

In the following, completeness and decidability of the proof system for the linear cone inductive
predicates are proved.

We prove the completeness and the decidability by the following: (1) each rule instance in the
proof search is locally complete, that is, if the conclusion of the rule instance is valid, then every
assumption is valid (Lemma 5.3), and (2) the number of entailments which can occur as inputs
of the main phase during the proof search is finite. By these properties, the proof search does not
get stuck and eventually halts (Lemma 5.6). The possible entailments which can be inputs of the
main phase are normal forms defined in Definition 5.4.

The restriction of the linearity plays important roles in both of them. For (1), we can limit
the depth of inductive wands, which is shown in the following Lemma 5.1. Note that this is not
a special case of Lemma 3.5 since here we need not consider the case of (R,Q—∗iP ) ∗ Q in the
succedent. For (2), the unfolding steps do not increase the size of spatial parts in entailments.
In order to achieve a complete and decidable proof system for general cone inductive predicates
which are not restricted to linear ones, we need many other mechanisms such as an elaborately
generalized split rule [28].

Lemma 5.1 (Inductive-wand introduction for linear cone inductive predicates) x ̸= y∧
y ↓ ∧(R(v, u)—∗iP (x, z)) |= {∃w((Q(y, w)—∗iP (x, z)) ∗ (R(v, u)—∗iQ(y, w)) | Q ∈ Dep(P ), R ∈
Dep(Q)}.

This lemma leads us to a restricted variant of (Factor) rule:

ψ ⊢
−→
ϕ , 1-Fact(ϕ, y)

ψ ⊢
−→
ϕ , ϕ

(1-Factor)
,

where 1-Fact(ϕ, y) is the same as Fact(ϕ, y) defined in the section 3.2 except the length of
−→
R in

every
−→
R—∗iQ is at most 1.



Definition 5.2 The proof system for the linear cone inductive predicates is defined as the same
as the proof system defined in Section 4.1 except the cone inductive definitions are restricted to
linear cone inductive definitions and (Factor) is replaced to (1-Factor).

The rule (1-Factor) is a combination of (Factor) and (∨R) since 1-Fact(ϕ, y) is a subset of
Fact(ϕ, y). Hence, the proof system for the linear cone inductive predicates is sound.

Lemma 5.3 For every application of inference rules in the proof-search procedure, if the input
of each step is valid, then every output of the step is valid.

Proof. The nontrivial cases are the steps 7.4 and 9. The proof for the step 7.4 is omitted.
For 9, the local completeness of (1-Factor) follows from Lemmas 3.5 and 5.1. 2

We define the normal forms as follows. The outputs of the initialization and the main phase
are the normal forms, and the number of normal forms which can occur in the proof search is
finite up to renaming.

Definition 5.4 (Normal forms) An entailment J ≡ Y ↑ ∧Π ∧ Γ ⊢ {∃−→w i.(Πi ∧ Σi)}i∈I is a
normal form iff the following hold.

1. FV(J) = Y +Roots(Γ) + Cells(Γ).

2. Roots(Σi) ⊆ Roots(Γ) + Cells(Γ).

3. Y ⊆ FV(Γ, {∃−→w i.Σi}i∈I).
4. −→w i ⊆ FV(Πi ∧ Σi).

5. Π = ( ̸= (FV(J) ∪ {nil})).
6. Πi = ( ̸= (FV(Γ) ∪ {−→w i,nil},−→w i)).

7. For i ̸= j ∈ I, (∃−→w i(Πi ∧ Σi))θ ̸≡ ∃−→w j(Πj ∧ Σj) for any renaming θ such that Dom(θ) ∩
FV(Γ) = ∅.

Lemma 5.5 Let J ≡ Y ↑ ∧Π ∧ Γ ⊢
−→
ϕ be an initial input of the proof-search procedure. For any

input entailment J ′ ≡ Y ′ ↑ ∧Π′ ∧ Γ′ ⊢
−→
ϕ ′ of each main phase in the proof search, we have the

following.

1. J ′ is a normal form.

2. |Roots(Γ)| ≥ |Roots(Γ′)| and Cells(Γ) ⊇ Cells(Γ′).

3. |
−→
R | ≤ 1 for every inductive wand

−→
R—∗iP in

−→
ϕ ′.

Lemma 5.6 The number of normal forms which can appear for the cycle check of the main phase
in the proof search is finite up to renaming.

By these Lemmas, we conclude completeness of the proof system for the linear cone inductive
predicates and that our proof-search procedure decides validity of entailments.

Theorem 5.7 (Completeness and decidability) 1. For the proof system for the linear cone
inductive predicates, the procedure decides the validity of a given entailment. Namely, For a given
input J , the procedure terminates without failure when the input is valid, and it fails when the
input is invalid.

2. The proof system for the linear cone inductive predicates is complete. Namely, every valid
entailment is provable.

Proof. First, we show that the procedure terminates for any input. Assume the procedure
does not terminate for some input. By Lemma 5.6, we have some upper bound n for the number
of normal forms. The cycle-check step in the main loop increases the size of the history. After
the (n+1)-th execution of the main loop, the size of the history becomes more than n+1. Since



# input entailment result time (sec.) depth

1* two(x, y) ⊢ two(y, x) VALID 0.02 2
2* tri(x, y, z) ⊢ tri(y, z, x) VALID 0.54 3
3* tri(x, y, z) ⊢ tri(z, x, y) VALID 0.57 3
4 ls(x, y) ∗ ls(y, nil) ⊢ ls(x,nil) VALID 0.01 1
5 ls(x, y) ∗ ls(y, z) ⊢ ls(x, z) VALID 0.12 4
6* ls(x, x) ∧ y ↓⊢ ls(y, y) VALID 0.09 5
7 lsa(x, y, z) ⊢ ls(x, y) VALID 3.05 5
8 ls(x, y) ⊢ lsa(x, y, x) VALID 0.44 8
9 ls(x, y) ⊢ lsa(x, y, y) INVALID 0.08 -
10 x ̸= y ∧ lsa(x, y, y) ⊢ ls(x, y) ∗ ls(y, y) VALID 0.11 3
11 lsa(x, y, y) ⊢ ls(x, y) ∗ ls(y, y) INVALID 0.09 -
12* lsa(x, x, y) ⊢ lsa(y, y, x) VALID 25.27 9
13 z ↑ ∧lsn(x, y) ∗ lsn(y, z) ⊢ lsn(x, z) VALID 0.03 2
14 lsn(x, y) ∗ lsn(y, z) ∗ to(z, nil) ⊢ lsn(x, z) ∗ to(z, nil) VALID 0.03 2
15 lsn(x, y) ∗ lsn(y, z) ⊢ lsn(x, z) INVALID 0.16 -
16 x ̸= z ∧ lsn(x, y) ∗ lsn(y, z) ⊢ lsn(x, z) INVALID 0.09 -
17 dll(h, t, p, n) ∗ dll(n, p, t, h) ⊢ dll(h, p, p, h) VALID 23.05 5
18 dll(h, t, p, n) ∗ dll(n, p, t, h) ⊢ dll(h, p, h, p) INVALID 21.17 -
19* dll(h, t, nil, nil) ⊢ dllrev(t, h, nil, nil) VALID 0.73 5
20* p ↑ ∧dll(h, t, p, n) ⊢ dllrev(t, h, n, p) VALID 47.06 5

(* proved with the factor rule)

Table 1. Experimental result

descriptions predicates definition clauses

point to to(x, y) x 7→ (y)
two cells linked to each other two(x, y) ∃z.y = z ∧ x 7→ (z) ∗ to(z, x)

cyclic three cells tri(x, y, z) ∃w.y = w ∧ x 7→ (w) ∗ tri1(w, z, x)
tri1(y, z, x) ∃w.z = w ∧ y 7→ (w) ∗ to(w, x)

list ls(x, y) x 7→ (y)
∨∃z.x 7→ (z) ∗ ls(z, y)

list with an allocated cell lsa(x, y, z) x = z ∧ x 7→ (y)
∨∃w.x = z ∧ x 7→ (w) ∗ lsa(w, y, w)
∨∃w.x 7→ (w) ∗ lsa(w, y, z)

acyclic list lsn(x, y) x ̸= y ∧ x 7→ (y)
∨∃z.x ̸= y ∧ x 7→ (z) ∗ lsn(z, y)

doubly-linked list dll(h, t, p, n) h = t ∧ h 7→ (p, n)
∨∃z.h 7→ (p, z) ∗ dll(z, t, h, n)

reverse doubly-linked list dllrev(h, t, p, n) h = t ∧ h 7→ (n, p)
∨∃z.h 7→ (z, p) ∗ dllrev(z, t, h, n)

Table 2. Definitions of inductive predicates

every element in the history is a normal form and they are not equal by variable renaming, it
contradicts.

1. Assume that the procedure terminates without failure for a given input J . Since each step
of the procedure consists of an application of an inference rule, J is provable. By the soundness
theorem, J is valid. Assume that the procedure fails for a given input J . By Lemma 5.3, J is
invalid. Hence the procedure decides the validity of an entailment.

2. Assume that J is valid in order to show J is provable. When we input J to the procedure,
by 1, the procedure terminates without failure. Since each step of the procedure consists of
applications of inference rules, J is provable. 2

6 Experiments

In order to confirm the usefulness of our procedure with the spatial factorization, we have built
a prototype prover, which was implemented in OCaml. The experiments were conducted on Mac
OS 10.12 machine with Intel R⃝ CoreTM i5 (1.3GHz) processor and 16GB RAM. The entailments
which were checked in our system are listed in Table 1, where the inductive definitions of the
predicates are in Table 2. The depth for each valid entailment is the repeat count of the main
loop, namely the depth of the proof. The first three examples may seem artificial, but they are just
to check how our proof search with the spatial factorization works. The current implementation
is for (1-Factor), not for the full (Factor) rule. Hence, the answer FAIL correctly means INVALID



for linear cone inductive predicates, whereas it means UNKNOWN for nonlinear cone inductive
predicates. All of the predicates in Fig. 2 are linear. The SAT checker for the extended language
is based on the idea in [28].

The examples #19 and #20 are (special cases of) the motivating example on the doubly-
linked list and its reverse variant. As we have seen in Section 4.5, it can be proved by the spatial
factorization in our system. However, the general form dll(h, t, p, n) ⊢ dllrev(t, h, n, p) cannot be
proved in 3 minutes. We guess that one of the reasons is the cost of case analysis, since this
entailment contains 4 variables, and they make many cases on = / ̸= and ↑ / ↓. In fact, if we add
a little more assumptions (p = n = nil for #19, and p ↑ for #20), we can prove it much faster.
The examples #17 and #18 append two doubly-linked lists (we put wrong arguments in #18 on
purpose), and the reason why it requires time also seems the cost of case analysis.

Another example where the spatial factorization plays an important role is #12. The predicate
lsa(x, y, z) represents a list segment from x to y such that the cell z lies on it. It allows cyclic
lists as ls(x, x, y), and hence lsa(x, x, y) ⊢ lsa(y, y, x) is valid. By the spatial factorization, we can
find the proof of this entailment. This example also takes much time although it contains only
2 variables. In the proof search, the inductive wand lsa—∗ilsa is introduced in succedents. The
arity of this inductive wand is 6, and that makes many possibilities of disjuncts in succedents. We
guess that makes it hard to find cycles since the depth of the found proof is 9, which is relatively
large.

7 Conclusion

We have proposed the cyclic-proof system for entailments of symbolic heaps with cone inductive
definitions, and implemented the procedure to decide the validity of entailments by using proof
search of this logical system in order to show the usefulness of the logical system by experiments.
We have also shown that if the logical system is restricted to linear cone inductive definitions, the
procedure becomes a decision procedure for the logical system, and the logical system becomes
complete.

For entailment checking in symbolic heaps with cone inductive definition, we have introduced
the new inference rule, the factor rule, by means of the inductive wand, which is a variant of the
magic wand. The Factor rule enables us to find a common root on both sides of entailments, and
by which the Unfold-Match-Remove strategy can be adopted to more widely.

The prover introduced in this paper is a first-step prototype to make sure that the spatial
factorization works well for entailment prover, and some examples are correctly checked by it. It
is one of the pressing issues to avoid the large case analysis, since our system currently cannot
answer dll ⊢ dllrev without any other assumption.

Another future work is a theoretical aspect of cyclic-proof systems for more relaxed class of the
inductive definitions. In particular, a complete cyclic-proof system with decidable and efficient
proof search is expected.
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