
Failure of Cut-Elimination in Cyclic Proofs of

Separation Logic

Daisuke Kimura1, Koji Nakazawa2, Tachio Terauchi3, and Hiroshi Unno4

1 Toho University kmr@is.sci.toho-u.ac.jp
2 Nagoya University knak@i.nagoya-u.ac.jp
3 Waseda University terauchi@waseda.jp
4 Tsukuba University uhiro@cs.tsukuba.ac.jp

Abstract This paper studies the role of the cut rule in cyclic proof systems for
separation logic. A cyclic proof system is a sequent-calculus style proof system for
proving properties involving inductively defined predicates. Recently, there has been
much interest in using cyclic proofs for proving properties described in separation logic
with inductively defined predicates. However, it is not known whether such systems has
the cut-elimination property, an important meta-theoretic property of proof systems.
Cut-elimination is not only of theoretical interest, because needing arbitrary cuts would
mean that there is a limit to what one would be able to prove by a näıve mechanical
proof search.

In this paper, we answer the question by showing that the cut-elimination property
fails in cyclic proof systems for separation logic. We present two systems, one for
sequents with single-conclusion, and another for sequents with multiple-conclusions.
To show the cut-elimination failure, we present concrete counter-example sequents
which the systems can prove with cuts but not without cuts. The counter-examples
are reasonably simple formulas about singly-linked lists, and therefore, suggest that
the cut rule is important for a practical application of cyclic proofs to separation logic.

1 Introduction

Separation logic [13] is a popular program logic for reasoning about programs that use pointer
data structures. In separation logic, reasoning about recursive data structures is made possible
by augmenting the logic with inductively defined predicates. For example, a predicate which says
that a pointer points to a list may be written as follows:

ls(x, y) := x 7→ y | x 7→ z ∗ ls(z, y).

Here, x 7→ y means that the memory cell at address x contains the value y, and A ∗ B is a
separating conjunction which says that the memory is a union of two memory regions hA and hB
with disjoint domains such that hA satisfies A and hB satisfies B. Therefore, ls(x, y) says that
x points to a singly-linked list that ends in y. (We refer to Section 2 for the formal definition of
separation logic.)

In a sequent-calculus style proof system, it is customary to handle inductively defined predi-
cates like ls(x, y) by adding a set of rules that introduce them to left and right sides of sequents.
For ls(x, y), the right introduction rules are:

A ⊢ x 7→ y

A ⊢ ls(x, y)

A ⊢ x 7→ z ∗ ls(z, y)
A ⊢ ls(x, y) ,

and the left introduction rule is:

A ∗ x 7→ y ⊢ C[x, y] A ∗ x 7→ z ∗ C[z, y] ⊢ C[x, y] A ∗ C[x, y] ⊢ B

A ∗ ls(x, y) ⊢ B
(Ind)

,

1



where z is a fresh variable and C[x, y] is a formula that may have free variables x and y. Note
that the formula C in the rule (Ind) is an induction hypothesis. That is, the left premise of the
rule says that C holds in the base case, and the middle premise encodes the inductive case which
roughly says that if C holds for the smaller list from z to y then it also holds for the larger list
from x to y. The rule is an obstacle to a mechanical proof search because one needs to guess an
appropriate C.

A cyclic proof system [3, 5, 4] offers an alternative approach to doing proofs about inductively
defined predicates in a sequent calculus. In this approach, the left introduction rule of an induc-
tively defined predicate is replaced by a rule that directly encodes the inductive definition. For
instance, the left introduction rule of ls(x, y) is given as

A ∗ x 7→ y ⊢ B A ∗ x 7→ z ∗ ls(z, y) ⊢ B

A ∗ ls(x, y) ⊢ B
(UL)

.

A proof search in a cyclic proof system starts from the root goal sequent, mechanically building
the proof tree upwards by applying an applicable rule at each node. The search may stop by
reaching a sequent (called a bud) that it has seen before (called a companion), thereby forming a
“cyclic” proof that has an edge from a leaf bud node to an internal companion node. To ensure
correctness, a certain condition, called global trace condition, is imposed on the cyclic structure
(cf. Section 3 for details).

Importantly, in the absence of the cut rule, the possible children of a node can be syntactically
determined from the (finitely many) rules applicable at the node, which substantially expediates
the mechnichal proof search.1 The property has been used to a great advantage by researchers
of cyclic proofs, and they have proposed automatic theorem provers based on cyclic proofs [6,
7]. Furthermore, as we discuss below, some automatic induction-based provers for separation
logic [11, 8, 16, 15] can also be seen as cyclic proof systems with restricted forms of cuts.

Meanwhile, cyclic proof systems are being intensively studied in the theoretical computer
science community (for various logics, such as separation logic, first-order logic, and linear logic)
[5, 3, 6, 7, 1, 2, 14, 12]. The research has lead to some remarkable results, such as showing
that the cyclic proof system (with cuts) is strictly more powerful than the standard inductive
first-order logic sequent calculus (i.e., that with a rule analogous to the (Ind) rule above) [5, 1].
However, some fundamental proof-theoretic properties, such as cut-elimination and completeness,
still remain open.

As the main contribution of this paper, we show that cut-elimination fails in cyclic proof
systems for separation logic. As remarked above, the result is not only of theoretical interest since
the presence of the cut rule substantially affects a mechanical proof search process. We prove the
result for two cyclic proof systems for separation logic: CSL0IDω which deduces sequents with
single conclusions, and CSLM

0 IDω which deduces sequents with multiple conclusions. We show
the cut-elimination failure by presenting concrete counter-example sequents which the systems
can prove with cuts but not without cuts. The counter-examples are fairly simple formulas
about singly-linked lists. They contain three kinds of semantically equivalent predicates ls(x, y),
lsX(x, y) and sl(x, y) each describing a singly-linked list from x to y. The predicate ls(x, y) is
the usual list definition shown above, whereas lsX(x, y) defines a list to be either a list of an odd
length or a list of an even length where odd and even length lists are defined inductively in a
manner analogous to ls(x, y). The predicate sl(x, y) is a “backward” definition of a list whereby
a list is constructed by adding an element to the tail rather than to the head. We show that the
sequent ls(x, y) ⊢ lsX(x, y) is a counter-example to cut-elimination for CSL0IDω, and the sequent
ls(x, y) ⊢ sl(x, y) is that for CSLM

0 IDω. Thus, a practical implication of our results is that (some
form of) a cut rule is necessary for designing useful theorem provers based on cyclic proofs, at
least for separation logic.

1Technically, this is only true if structural rules such as weakening, contraction, and substitution are made
implicit.

2



The rest of the paper is organized as follows. We discuss related work next. Section 2 intro-
duces SL0, a simple fragment of separation logic used in the rest of the paper. Section 3 presents
CSL0IDω and shows our first main result which says that cut-elimination fails for CSL0IDω.
CSL0IDω is closely related to the system proposed by Brotherston et al. [6], and the section also
shows that cut-elimination fails in their system as well. In Section 3, we present CSLM

0 IDω, and
show that the counter-example for CSL0IDω (i.e. ls(x, y) ⊢ lsX(x, y)) is cut-free provable in
CSLM

0 IDω. Then, we show that CSLM
0 IDω still fails to satisfy cut-elimination by presenting the

cut-free unprovability of the counter-example ls(x, y) ⊢ sl(x, y). Section 5 concludes the paper
with a discussion on future work.

Related Work: As remarked above, there has been much work on meta-theoretic properties of
cyclic proof systems for various logics [5, 3, 6, 7, 1, 2, 14, 12, 10, 9]. Among them, some papers
discuss the cut-elimination property for cyclic proof systems. The paper [10] considers a cyclic
proof system for µMALL (linear logic with least and greatest fixed-point operators), and discusses
non-preservability of the cyclic structure by the ordinary cut-elimination procedure. It discusses
the behavior of cut-elimination procedure, but our paper considers admissibility of the cut rule.
The paper [9] proposes a sequent-style system for Kleene algebra, and shows the cut rule is not
admissible in the system.

In the context of (semi-)automated deduction, several cyclic-proof-based theorem provers for
separation logic have been proposed [6, 11, 8, 16, 15]. Some of them allow restricted forms
of cut. For instance, SLEEK [11] allows cuts, but only against user-provided lemmas. The
theorem provers proposed in [8, 16, 15] synthesize induction hypotheses during the proof search
by following a certain set of rules. They can be seen as a kind of a cyclic proof system in which
the cuts are restricted to be only against the synthesized induction hypotheses. None of these
papers investigate the effect of having or not having the cut rule nor discuss relation to restricted
forms of cuts.

2 Simple fragment of separation logic SL0

This section defines a simple fragment of separation logic (SL0), which has the minimum necessary
connectives 7→ and ∗ to define our counter-examples.

2.1 Syntax of SL0

We assume a finite set {P1, . . . , PK} of inductive predicates. Each inductive predicate P has its
arity ar(P ). Terms of SL0 (denoted by t, u, . . .) consist of variables (x, y, z · · · ) and nil. We
sometimes write x ∈ −→x if x appears in −→x .

Formulas (denoted by A,B,C, . . .) of SL0 are defined as follows.

A ::= t 7→ u | P (
−→
t ) | A ∗A,

where the length of
−→
t is ar(P ). We sometimes write A(−→x ) to denote variables occurring in A

explicitly. We implicitly suppose associativity and commutativity of the separating conjunction
∗, that is, (A ∗B) ∗ C and B ∗ (A ∗ C) are identified.

The set of free variables in A is written as FV(A). The union of FV(A1), . . . ,FV(An) is
written as FV(A1, . . . , An).

A substitution (denoted by θ) has the form x1 := t1, . . . , xk := tk, where xi and xj are different
variables if i ̸= j. The formula obtained by replacing each xi by ti (i = 1, . . . , k) in A is written
by A[x1 := t1, . . . , xk := tk].

Each inductive predicate P has its own definition, which is given as follows:

P (−→x ) := A1 | . . . | As

3



Each Ai is called a definition clause of P . Intuitively, this means that P (−→x ) is defined by
the disjunction of A1, . . . , As. We note that variables of Aj not appearing in −→x are implicitly
existentially quantified. Namely, P (−→x ) is defined by ∃−→y1A1(

−→x ,−→y1) ∨ . . . ∨ ∃−→ysAs(
−→x ,−→ys).

In this paper we will consider several kinds of list predicates ls, sl, lsO, lsE and lsX given
below.

Definition 1. The definitions of ls, sl, lsO, lsE, and lsX are given as follows.
ls(x, y) := x 7→ y | x 7→ z ∗ ls(z, y)
sl(x, y) := x 7→ y | sl(x, z) ∗ z 7→ y
lsO(x, y) := x 7→ y | x 7→ z ∗ lsE(z, y)
lsE(x, y) := x 7→ z ∗ lsO(z, y)
lsX(x, y) := lsO(x, y) | lsE(x, y)

Both ls(x, y) and sl(x, y) mean singly-linked list segments of positive lengths from x to y. The
former and the latter predicates represent list segments constructed by adding cells repeatedly
to the head position and the tail position, respectively. lsO(x, y) and lsE(x, y) mean list seg-
ments with odd and positive even lengths, respectively. They are defined by a mutual induction.
lsX(x, y) means list segments with odd or positive even length, that is, list segments of positive
length. The formulas ls(x, y), sl(x, y), and lsX(x, y) are semantically equivalent (see Lemma 2).

2.2 Semantics of SL0

Let N be the set of natural numbers. A store (denoted by s) is a function from variables to N . It is
extended to a function on terms by s(nil) = 0. We define update s[x1 := a1, . . . , xn := an] of s by
the store s′ such that s′(xi) = ai and s′(y) = s(y) if y ̸∈ {x1, . . . , xn}. It is sometimes abbreviated
by s[−→x := −→a ]. A heap (denoted by h) is a finite partial function from N \ {0} to N . The domain
of h is written by dom(h). We write h1 + h2 for disjoint union of h1 and h2, namely, it is defined
when dom(h1) and dom(h1) are disjoint, and (h1 + h2)(a) = hi(a) if a ∈ dom(hi) for i = 1, 2. We
sometimes write [a1 7→ b1, . . . , am 7→ bm] for the heap h defined by dom(h) = {a1, . . . , am} and
h(aj) = bj (1 ≤ j ≤ m).

A pair (s, h) is called a heap model.

Definition 2 (Interpretation of formulas). The interpretation of a formula A in (s, h) (denoted
by s, h |= A) is inductively defined as follows.

s, h |= t 7→ u
def⇐⇒ h = [s(t) 7→ s(u)]

s, h |= P (0)(
−→
t )

def⇐⇒ never

s, h |= P (m+1)(
−→
t )

def⇐⇒ s[−→y :=
−→
b ], h |= A[P

(m)
1 , . . . , P

(m)
K /P1, . . . , PK ](

−→
t ,−→y )

for some
−→
b and definition clause A of P .

s, h |= P (
−→
t )

def⇐⇒ s, h |= P (m)(
−→
t ) for some m

s, h |= A1 ∗A2
def⇐⇒ there exist h1 and h2 such that h = h1 + h2,

s, h1 |= A1 and s, h2 |= A2,

where P (m) is an auxiliary notation for defining s, h |= P (
−→
t ) and A[P

(m)
1 , . . . , P

(m)
K /P1, . . . , PK ]

is the formula obtained by replacing each Pi by P
(m)
i .

Intuitively P (m) corresponds the m-time unfolding of P , that is, P (0)(−→x ) means ⊥ and

P (m+1)(−→x ) means
∨s

i=1 ∃
−→yiAi[P

(m)
1 , . . . , P

(m)
K /P1, . . . , PK ](−→x ,−→yj ), where A1, . . . , As are the defi-

nition clauses of P .
The following lemma explains how the above definition for inductive predicates works. This

result will be used in the proof of Theorem 2 and Lemma 5.

Lemma 1. Let hn be [a0 7→ a1, a1 7→ a2, . . . , an−1 7→ an] for n ≥ 1. That is, hn forms a singly-
linked list of length n. Take a store s that satisfies s(x) = a0 and s(y) = an. Then we have

4



s, hn |= ls(n)(x, y) by induction on n. Hence s, hn |= ls(x, y) holds for any n ≥ 1. We can also
show s, hn |= sl(x, y) and s, hn |= lsX(x, y).

We say A and B are logically equivalent if for any heap model (s, h), s, h |= A and s, h |= B
are equivalent. Then we have the following claim.

Lemma 2. ls(x, y), sl(x, y), and lsX(x, y) are logically equivalent.

3 Cyclic proof system CSL0IDω for SL0

This subsection defines a cyclic proof system CSL0IDω for SL0, which handles single-conclusion
sequents defined as follows.

Definition 3 (Single-conclusion sequents of SL0). A sequent of SL0 has the form A ⊢ B. The
formula on the left-hand side and the right-hand side of a sequent are called its antecedent and
succedent (or conclusion), respectively. A sequent A ⊢ B is called valid if, for any heap model
(s, h), s, h |= A implies s, h |= B.

In the next subsection, the word “conclusion” for an inference rule will be defined. In order
to avoid confusion, for sequents, we will not use this word alone, but use it as “single-conclusion”
or “multiple-conclusion”.

3.1 Cyclic proof system CSL0IDω

The derivation rules of CSL0IDω consists of the basic rules and the unfolding rules. The basic
rules are given as follows.

A ⊢ A
(Id) A ⊢ C C ⊢ B

A ⊢ B
(Cut)

A1 ⊢ B1 A2 ⊢ B2

A1 ∗A2 ⊢ B1 ∗B2
(∗)

The unfolding rules consist of UL and UR. In the following, we assume P (−→x ) := A1 | . . . | As is
the definition of P .

B ⊢ Aj(
−→
t ,−→u )

B ⊢ P (
−→
t )

(UR)
B ∗A1(

−→
t ,−→z1) ⊢ C · · · B ∗As(

−→
t ,−→zs) ⊢ C

B ∗ P (
−→
t ) ⊢ C

(UL)

where −→z1 , . . . ,−→zs are fresh

For each inference rule, sequents above the horizontal line are called its premises, and a sequent
below the line is called its conclusion.

Example 1. The unfolding rules for ls, sl, lsO, lsE and lsX are as follows.
Rules for ls:

B ⊢ t 7→ u
B ⊢ ls(t, u)

(UR)
B ⊢ t 7→ t1 ∗ ls(t1, u)

B ⊢ ls(t, u)
(UR)

B ∗ t 7→ u ⊢ C B ∗ t 7→ z ∗ ls(z, u) ⊢ C

B ∗ ls(t, u) ⊢ C
(UL)

Rules for sl:

B ⊢ t 7→ u
B ⊢ sl(t, u)

(UR)
B ⊢ sl(t, u1) ∗ u1 7→ u

B ⊢ sl(t, u)
(UR)

B ∗ t 7→ u ⊢ C B ∗ sl(t, z) ∗ z 7→ u ⊢ C

B ∗ sl(t, u) ⊢ C
(UL)

Rules for lsO:

B ⊢ t 7→ u
B ⊢ lsO(t, u)

(UR)
B ⊢ t 7→ t1 ∗ lsE(t1, u)

B ⊢ lsO(t, u)
(UR)

B ∗ t 7→ u ⊢ C B ∗ t 7→ z ∗ lsE(z, u) ⊢ C

B ∗ lsO(t, u) ⊢ C
(UL)

Rules for lsE:

B ⊢ t 7→ t1 ∗ lsO(t1, u)

B ⊢ lsE(t, u)
(UR)

B ∗ t 7→ z ∗ lsO(z, u) ⊢ C

B ∗ lsE(t, u) ⊢ C
(UL)

5



Rules for lsX:

B ⊢ lsO(t, u)

B ⊢ lsX(t, u)
(UR)

B ⊢ lsE(t, u)

B ⊢ lsX(t, u)
(UR)

B ∗ lsO(t, u) ⊢ C B ∗ lsE(t, u) ⊢ C

B ∗ lsX(t, u) ⊢ C
(UL)

We define a cyclic proof of CSL0IDω in the similar way to [4, 5].

Definition 4 (Derivation tree). A derivation tree (denoted by D) of a sequent e is a finite tree
structure whose nodes are labeled by sequents of SL0, the label of the root node is e, and a
node labeled with e′ has children labeled with e′1, . . . , e

′
k when there is an instance e′1 . . . e′k

e′
of an

inference rule of CSL0IDω. A leaf node which is the conclusion of (Id)-rule is called closed. An
open (not closed) leaf is called a bud. A companion for a bud eb is an occurrence of a sequent ec
in D of which eb is an substitution instance, namely, eb = ec[θ] for some θ.

In a derivation tree, if e appears as a conclusion of a rule instance and e′ is a premise of the
rule, e′ is called a premise of e. In this case, e is called a parent of e′. Similary we also use the
usual terminology of the tree structure such as child and descendant.

Definition 5 (Pre-proof). A pre-proof of e is given by (D,R), where D is a derivation tree of e
and R is a function assigning a companion to every bud of D. A proof-graph G(P) of a pre-proof
P = (D,R) is a graph structure D with additional edges from buds to their companions assigned
by R. A path in P is a path in G(P).

Definition 6 (Trace). Let (ei)i∈ω be an infinite path in P. A trace following (ei)i∈ω is a sequence
of (Ci)i∈ω such that each Ci is a subformula occurrence of the form P (

−→
t ) in the antecedent of

ei, and satisfies the following conditions:
(a) if ei is the conclusion of (UL) in D, then either Ci = Ci+1 or Ci is unfolded in the rule
instance and Ci+1 appears as a subformula of the unfolding result. In the latter case, i is called
a progressing point of the trace;
(b) if ei is the conclusion of a rule other than (UL), then Ci+1 is the subformula occurrence in
ei+1 corresponding Ci in ei;
(c) if ei is a bud and ei+1[θ] = ei for some substitution θ, then Ci+1 is the corresponding subformula
occurrence in ei+1, which satisfies Ci+1[θ] = Ci.

Definition 7 (Cyclic proof). Let P be a pre-proof of e. P is called a cyclic proof of e if it satisfies
the global trace condition: for any infinite path (ei)i∈ω in P, there exists a trace (Ci)i∈ω following
the path that have infinitely many progressing points.

The global trace condition is a sufficient condition for soundness, that is, we have the following
theorem. This theorem is shown by the similar way to [4, 5, 6].

Theorem 1 (Soundness of CSL0IDω). If A ⊢ B has a cyclic proof P of CSL0IDω, then all
sequents in P are valid. In particular, A ⊢ B is valid.

In the following subsection we will prove that ls(x, y) ⊢ lsX(x, y) is a counter-example for the
cut-elimination property of CSL0IDω. We first show that this example has a cyclic proof with
(Cut).

Proposition 1. (1) x 7→ z ∗ lsX(z, y) ⊢ lsX(x, y) is cut-free provable in CSL0IDω.
(2) ls(x, y) ⊢ lsX(x, y) is provable in CSL0IDω with (Cut).

Proof. (1) is shown as follows.

x 7→ z ∗ lsO(z, y) ⊢ x 7→ z ∗ lsO(z, y)

x 7→ z ∗ lsO(z, y) ⊢ lsE(x, y)
(UR)

x 7→ z ∗ lsO(z, y) ⊢ lsX(x, y)
(UR)

x 7→ z ∗ lsE(z, y) ⊢ x 7→ z ∗ lsE(z, y)

x 7→ z ∗ lsE(z, y) ⊢ lsO(x, y)
(UR)

x 7→ z ∗ lsE(z, y) ⊢ lsX(x, y)
(UR)

x 7→ z ∗ lsX(z, y) ⊢ lsX(x, y)
(UL)

6



By using this result, (2) is shown as follows.

x 7→ y ⊢ x 7→ y

x 7→ y ⊢ lsO(x, y)
(UR)

x 7→ y ⊢ lsX(x, y)
(UR)

x 7→ z ⊢ x 7→ z (†) ls(z, y) ⊢ lsX(z, y)

x 7→ z ∗ ls(z, y) ⊢ x 7→ z ∗ lsX(z, y)
(∗) (1)

x 7→ z ∗ lsX(z, y) ⊢ lsX(x, y)

x 7→ z ∗ ls(z, y) ⊢ lsX(x, y)
(Cut)

(†) ls(x, y) ⊢ lsX(x, y)
(UL)

The topmost entailment ls(z, y) ⊢ lsX(z, y) marked by (†) is a bud whose companion is the
entailment ls(z, y) ⊢ lsX(z, y) with the same mark at the root position. The only infinite path
which is created from the bud-companion has an infinitely progressing trace (the sequence of the
underlined predicates). Hence the above pre-proof is a cyclic proof.

3.2 Counter-example for cut-elimination of CSL0IDω

We define ♯7→A by the number of 7→ in A. We also define ♯ 7→(A ⊢ B) by ♯ 7→A.
Next theorem is our first main result, namely, the cut-elimination property fails in CSL0IDω.

Theorem 2. The sequent ls(x, y) ⊢ lsX(x, y) is not cut-free provable in CSL0IDω.

Proof. Suppose that ls(x, y) ⊢ lsX(x, y) has a cut-free cyclic proof (D,R). We will show contra-
diction.

We construct a finite path e = (e0, e1, . . . , em) of D such that each ej has the form (up to
permutation of ∗)

z0 7→ z1 ∗ . . . ∗ zkj−1 7→ zkj ∗ ls(zkj , w) ⊢ lsX(z0, w)

for some kj and pairwise distinct variables z0, . . . , zkj , w. Let e0 be ls(x, y) ⊢ lsX(x, y) at the root
position. Assume that e0, . . . , ej are already defined. If ej is the conclusion of a (UL), then define
ej+1 by the unique premise of the rule instance that contains the ls-predicate in the antecedent.
We note that ej+1 has the required form and ♯7→ej < ♯ 7→ej+1. Otherwise finish constructing the
path e.

Claim1. For any sequent e in D, if the antecedent of e contains the ls-predicate, then e ∈ e or
e is a descendant of em.

This claim is shown by induction on the height ht(e), namely the length of the path from the
root node to e, of e in D. If ht(e) = 0, then e = e0 ∈ e. We show the case ht(e) > 0. Assume
e ̸∈ e. We show that e is a descendant of em. In this case, e is an premise of an instance of a rule
(r), which is not (Cut). Let e′ be the parent of e, that is the conclusion of the rule instance. Then
the antecedent of e′ contains the ls-predicate. Hence e′ ∈ e or e′ is a descendant of em by the
induction hypothesis. If the latter case holds, we have the expected result. Otherwise, e′ must be
em since e contains ls, e′ ∈ e and e ̸∈ e. Thus e is a descendant of em. Hence we have Claim1.

Claim2. em is not a bud.
We show this claim. Assume that em is a bud. Then the antecedent of the companion e

contains the ls-predicate. By Claim1, we have e ∈ e since em is a bud. Hence there is an infinite
path e, . . . , em, e, . . . of the cyclic proof (D,R). By the global trace condition, there is a trace
following the path with infinitely many progressing points This means ♯ 7→e < ♯ 7→em < ♯ 7→e. Hence
we have contradiction. Thus we obtain Claim2.

By Claim2, em is a conclusion of an instance of a rule (r). Then (r) must be (UR) by case
analysis of the inference rules. Let ẽ be the unique child of em in D. The form of ẽ is either

(a) z0 7→ z1 ∗ . . . ∗ zkm−1 7→ zkm ∗ ls(zkm , w) ⊢ lsO(z0, w), or
(b) z0 7→ z1 ∗ . . . ∗ zkm−1 7→ zkm ∗ ls(zkm , w) ⊢ lsE(z0, w)

Consider the case (a). Take a store s1 such that s1(zi) = i+1 and s1(w) = 2∗km+1. Define h1 by
dom(h1) = {1, 2, . . . , 2∗km} and h1(i) = i+1. Then s1, h1 |= z0 7→ z1∗. . .∗zkm−1 7→ zkm∗ls(zkm , w)
and s1, h1 ̸|= lsO(z0, w). Hence (a) is invalid. We can also show that (b) is invalid by taking s2
such that s2(zi) = i+1 and s2(w) = 2∗km+2, and defining h2 by dom(h2) = {1, 2, . . . , 2∗km+1}

7



and h2(i) = i + 1. Therefore ẽ is invalid. This contradicts the soundness theorem. Hence we
conclude that ls(x, y) ⊢ lsX(x, y) is not cut-free provable.

By combining proposition 1 and theorem 2, we can obtain our first main result.

Corollary 1. The cyclic proof system CSL0IDω does not enjoy the cut-elimination property.

3.3 Failure of Cut-elimination in Brotherston’s CADE2011-system

Our CSL0IDω is designed as a simpler system as much as possible in order to simplify our
discussion. In this subsection we demonstrate that the proof given in the previous subsection also
works for some extended systems including the cyclic proof system of separation logic given by
Brotherston’s CADE2011 paper [6].

We first extend SL0 by adding the empty predicate emp, that is, the formulas of the extended
system SL’0 are given as follows:

A ::= t 7→ t | A ∗A | P (
−→
t ) | emp

The interpretation of the empty predicate is given as follows:

s, h |= emp
def⇐⇒ dom(h) = ∅

Then we extend CSL0IDω by adding the following derivation rules:

A ⊢ B
A ⊢ B ∗ emp

(EmpR) A ⊢ B
emp ∗A ⊢ B

(EmpL)

A ⊢ B ∗ emp

A ⊢ B
(EmpR’)

emp ∗A ⊢ B

A ⊢ B
(EmpL’)

x 7→ u ∗ x 7→ u′ ∗A ⊢ B
(Unsat7→)

We call this extended system CSL’0IDω.

The definitions of pre-proofs, traces, and cyclic proofs of CSL’0IDω are given in the similar
way to those of CSL0IDω. The soundness theorem for this extended system also holds.

Then we can show the similar claim to Theorem 2.

Proposition 2. The sequent ls(x, y) ⊢ lsX(x, y) is not cut-free provable in CSL’0IDω.

Proof (sketch). Suppose that ls(x, y) ⊢ lsX(x, y) has a cut-free cyclic proof (D,R). We construct
a finite path e = (e0, e1, . . . , em) of D such that each ej has the form

z0 7→ z1 ∗ . . . ∗ zkj−1 7→ zkj ∗ ls(zkj , w) ∗
−−−→emp ⊢ lsX(z0, w) ∗ −−−→emp

for some kj and pairwise distinct variables z0, . . . , zkj , w, and e0 is ls(x, y) ⊢ lsX(x, y) at the root
position. If ej is the conclusion of a (UL), define ej+1 by the unique premise of ej which contains
ls. If ej is the conclusion of EmpL, EmpR, EmpL’, or EmpR’, define ej+1 by the unique premise.
We claim that ♯7→ej ≤ ♯ 7→ej+1 for any j < m, and, in particular, ♯7→ej < ♯ 7→ej+1 if ej is the
conclusion of a rule instance of (UL). Then we have the same claims as Claim1 and Claim2 of
Theorem 2. We also have the following claim:

Claim3 em is not the conclusion of a rule instance of (Unsat7→).
This claim is obtained by investigating that the antecedents of e are satisfiable. Hence em cannot
be the conclusion of (Unsat 7→).

By using Claim1, Claim2, and Claim3, we can show the expected result in a similar way to
the proof of Theorem 2.

8



We introduce an extended system CSLBIDω, which is a variant of the system given in [6].
The difference between these two systems is not essential: terms of the system in [6] are only
variables. The formulas of CSLBIDω are given as follows:

A ::= t 7→ t | A ∗A | P (
−→
t ) | emp | t = t | t ̸= t | t 27→ (t, t) | ⊤ | ⊥ | A ∨A

The derivation rules of CSLBIDω are those of CSL’0IDω with the following rules:

⊥ ∗A ⊢ B
(⊥)

A ⊢ ⊤ (⊤)
A ⊢ t = t

(=R)

t = u ∗ t ̸= u ∗A ⊢ B
(Unsat=)

t
27→ (u1, u2) ∗ t

27→ (u′1, u
′
2) ∗A ⊢ B

(Unsat
27→)

A1 ∗B ⊢ C A2 ∗B ⊢ C

(A1 ∨A2) ∗B ⊢ C
(∨L) A ⊢ Bi ∗ C

A ⊢ (B1 ∨B2) ∗ C
(∨R)

(i = 1, 2)

The following lemma shows that the above additional inference rules cannot be applied in
proof-search procedures of ls(x, y) ⊢ lsX(x, y).

Lemma 3. Let A and B be formulas of CSLBIDω whose connectives and predicates are emp, ∗,
7→, ls, lsX, lsE, and lsO. Assume A ⊢ B has a cut-free derivation tree of CSLBIDω. Then all
inference rules used in the derivation tree are those of CSL’0IDω.

This lemma can be shown by induction on the derivation tree.

As the result of this subsection, we can show the failure of cut-elimination in CSLBIDω.

Theorem 3 (Failure of cut-elimination in CSLBIDω). CSLBIDω does not enjoy the cut-
elimination property.

Proof. Note that ls(x, y) ⊢ lsX(x, y) can be shown in CSLBIDω with (Cut), since CSLBIDω is an
extension of CSL0IDω. Then we show ls(x, y) ⊢ lsX(x, y) is not cut-free provable in CSLBIDω.
Assume that it has a cut-free cyclic proof of CSLBIDω. Then the cyclic proof is also a proof of
CSL’0IDω since all inference rules are those of CSL’0IDω by the previous lemma. Hence we have
contradiction by proposition 2.

Remark 1. In [6], an automated prover for sequents (that does not contain nil) in CSLBIDω,
which is based on a proof-search procedure in CSLBIDω, is proposed. Although the system
contains (Cut), the tool uses the rule for managing basic properties about ∗, such as associativity,
commutativity, and unit of ∗. Hence the prover cannot find non-trivial cut-formulas (e.g. the
cut-formula x 7→ z∗lsX(z, y) used in the proof of Proposition 1) during its proof-search procedure.

Recall that each sequent considered in this section has a single-conclusion. It is the reason
why ls(x, y) ⊢ lsX(x, y) works as a counter-example for the cut-elimination, that is, we are forced
to choose either lsO(x, y) or lsE(x, y) in unfolding lsX(x, y) on the right-hand side of a sequent.
This situation can be avoided if we consider sequents with multiple-conclusions.

4 Cyclic proof system CSLM
0 IDω for multiple-conclusion SL0

This section presents the second cyclic proof system CSLM
0 IDω for sequents with multiple-

conclusions defined below.
Let ∆ be a multiset of formulas. We sometimes write B1, B2, . . . , Bn instead of

{B1, B2, . . . , Bn}. We also write ∆, B for ∆∪{B}. We define ∆∗∆′ by {B ∗B′ | B ∈ ∆ and B′ ∈
∆′}. We also define s, h |=

∨
∆ by ∃B ∈ ∆(s, h |= B).

Definition 8 (Multiple-conclusion sequents of SL0). The multiple-conclusion sequents of SL0

have the form A ⊢ ∆. A sequent A ⊢ ∆ is valid if, for any (s, h), s, h |= A implies s, h |=
∨
∆.

9



4.1 Cyclic proof system CSLM
0 IDω for multiple-conclusion sequents

The derivation rules of CSLM
0 IDω consists of the basic rules and the unfolding rules. The basic

rules of CSLM
0 IDω are given as follows.

A ⊢ A
(Id)

A ⊢ ∆1, C C ⊢ ∆2

A ⊢ ∆1,∆2
(Cut)

A1 ⊢ ∆1 A2 ⊢ ∆2

A1 ∗A2 ⊢ ∆1 ∗∆2
(∗)

A ⊢ ∆
A ⊢ ∆, B

(Wk)
A ⊢ ∆, B,B

A ⊢ ∆, B
(Ctr)

The unfolding rules (UL) and (UR) of CSLM
0 IDω are straightforward extension of those of

CSL0IDω. We assume that P (−→x ) := A1 | . . . | An is the definition of P .

B ⊢ ∆, Aj(
−→
t ,−→u )

B ⊢ ∆, P (
−→
t )

(UR)
B ∗A1(

−→
t ,−→z1) ⊢ ∆ . . . B ∗An(

−→
t ,−→zn) ⊢ ∆

B ∗ P (
−→
t ) ⊢ ∆

(UL)

where −→z1 , . . . ,−→zn are fresh

The pre-proofs, traces, and cyclic proofs of CSLM
0 IDω are defined similarly to those of

CSL0IDω.

Remark 2. The main difference between CSL0IDω and CSLM
0 IDω is the structural rules, namely

the contraction rule (Ctr) and the weakening rule (Wk). These rules change whole proof structure
and strengthen provability of the proof system. As we will see in the next proposition, the previous
counter-example does not work in the current system. Hence we need a new counter-example and
a new proof technique that can capture the changed proof structure.

The soundness theorem of CSLM
0 IDω is also shown in the similar way to that of CSL0IDω:

Theorem 4 (Soundness of CSLM
0 IDω). If A ⊢ ∆ has a cyclic proof P of CSLM

0 IDω, then all
sequents in P are valid. In particular, A ⊢ ∆ is valid.

The previous example ls(x, y) ⊢ lsX(x, y) is cut-free provable in the current system.

Proposition 3. ls(x, y) ⊢ lsX(x, y) is cut-free provable in CSLM
0 IDω.

Proof. ls(x, y) ⊢ lsX(x, y) is proved without (Cut) as follows.

x 7→ y ⊢ x 7→ y

x 7→ y ⊢ lsO(x, y)
(UR)

x 7→ y ⊢ lsO(x, y), lsE(x, y)
(Wk)

x 7→ z ⊢ x 7→ z (†) ls(z, y) ⊢ lsE(z, y), lsO(z, y)

x 7→ z ∗ ls(z, y) ⊢ x 7→ z ∗ lsE(z, y), x 7→ z ∗ lsO(z, y)
(∗)

x 7→ z ∗ ls(z, y) ⊢ lsO(x, y), lsE(x, y)
(UR× 2)

(†) ls(x, y) ⊢ lsO(x, y), lsE(x, y)
(UL)

ls(x, y) ⊢ lsX(x, y), lsX(x, y)
(UR× 2)

ls(x, y) ⊢ lsX(x, y)
(Ctr)

Note that the two entailments marked by (†) are in a bud-companion relation. The only infinite
path in this pre-proof contains an infinitely progressing trace (the sequence of the underlined
predicates). Hence this pre-proof is a cyclic proof since it satisfies the global trace condition.

This proposition shows that ls(x, y) ⊢ lsX(x, y) does not work as a counter-example for the
cut-elimination property of CSLM

0 IDω. However we still have another counter-example ls(x, y) ⊢
sl(x, y). We first show that this sequent is provable in CSLM

0 IDω.

Proposition 4. (1) x 7→ z ∗ sl(z, y) ⊢ sl(x, y) is (cut-free) provable in CSLM
0 IDω.

(2) ls(x, y) ⊢ sl(x, y) is provable in CSLM
0 IDω with (Cut).

Proof. (1) is shown as follows.

10



x 7→ z ∗ z 7→ y ⊢ x 7→ z ∗ z 7→ y

x 7→ z ∗ z 7→ y ⊢ sl(x, z) ∗ z 7→ y
(UR)

x 7→ z ∗ z 7→ y ⊢ sl(x, y)
(UR)

(†) x 7→ z ∗ sl(z, w) ⊢ sl(x,w) w 7→ y ⊢ w 7→ y

x 7→ z ∗ sl(z, w) ∗ w 7→ y ⊢ sl(x,w) ∗ w 7→ y
(∗)

x 7→ z ∗ sl(z, w) ∗ w 7→ y ⊢ sl(x, y)
(UR)

(†) x 7→ z ∗ sl(z, y) ⊢ sl(x, y)
(UL)

Note that this pre-proof is a cyclic proof since it satisfies the global trace condition.
By using (1), the second claim (2) is shown as follows.

x 7→ y ⊢ x 7→ y

x 7→ y ⊢ sl(x, y)
(UR)

x 7→ z ⊢ x 7→ z (‡) ls(z, y) ⊢ sl(z, y)

x 7→ z ∗ ls(z, y) ⊢ x 7→ z ∗ sl(z, y) (∗)
(1)

x 7→ z ∗ sl(z, y) ⊢ sl(x, y)

x 7→ z ∗ ls(z, y) ⊢ sl(x, y)
(Cut)

(‡) ls(x, y) ⊢ sl(x, y)
(UL)

We can easily check the above pre-proof satisfies the global trace condition. Hence ls(x, y) ⊢
sl(x, y) has a cyclic proof with (Cut).

4.2 Counter-example for cut-elimination of CSLM
0 IDω

This subsection shows that the cut-elimination property fails in CSLM
0 IDω. The main result of

this section is the following theorem.

Theorem 5. The sequent ls(x, y) ⊢ sl(x, y) is not cut-free provable in CSLM
0 IDω.

Remark 3. In the proof of Theorem 2, a contradiction appears at the point when (UR) is applied
to the unique succedent. In the current case, however, this idea does not work, since, at the point
that (UR) is used, a formula before (UR) may remain in the succedent part because of contraction.

Our basic idea for proving Theorem 5 is as follows: focusing on the path of a cyclic proof that
contains both ls in the antecedent part and sl in the succedent part; and analyzing the form of
sequents on the path. To do this, we prepare some notions and show their properties.

In the following we write ∗n
i=0Ai for A0 ∗ · · · ∗An.

Definition 9 (Ls-form). An SL0 formula is called a connected Ls-form from x to y, if it has the
form ∗n−1

i=0 zi 7→ zi+1 ∗ ls(zn, y), z0 is x, and −→z , y are pairwise distinct variables. A formula is
called an Ls-form from x to y, if it is obtained by removing some points-to predicates from a
connected Ls-form.

We sometimes omit “from x to y” if it is apparent from the context.

Definition 10 (Sl-form). A formula is called a connected Sl-form from x to y, if it has the form
sl(x, zn)∗∗n−1

i=0 zi+1 7→ zi with z0 = y. A formula is called an Sl-form from x to y, if it is obtained
by removing some points-to predicates from a connected Sl-form. A formula is called a semi
Sl-form, if it is an Sl-form or contains only 7→.

A finite multiset ∆ of formulas is called a semi Sl-form, if all elements of ∆ are semi Sl-form.

The following lemma is easily shown from the definition.

Lemma 4. If A is an Ls-form from x to y, then A is satisfiable.

Lemma 5. Assume that A is an Ls-form from x to y, ∆ is a semi Sl-form from x to y, and
A ⊢ ∆ is valid. Then we have the following claims.

(1) A is a connected Ls-form.
(2) sl(x, y) is in ∆.

Proof. Suppose the assumption. Since A is an Ls-form from x to y, there is a connected Ls-form

∗n−1
i=0 zi 7→ zi+1 ∗ ls(zn, y), where z0 = x and −→z , y are pairwise distinct. Then A can be written

as ∗i∈Izi 7→ zi+1 ∗ ls(zn, y), where I ⊆ {0, . . . , n− 1}. Let k = |FV(A,∆)|. Define s and h by:

11



s(zi) = i+ 1 for i ∈ {0, 1, . . . , n}, s(y) = n+ k + 2, and s(w) = 0 if w ̸∈ −→z , y.
dom(h) = {i+ 1 | i ∈ I} ∪ {n+ 1, n+ 2, . . . , n+ k + 1} and
h(m) = m+ 1 for m ∈ dom(h).

Then |dom(h)| = |I|+ k+ 1 and n+ k+ 2 ̸∈ dom(h). We also have s, h |= A. Hence s, h |= B for
some B ∈ ∆ since A ⊢ ∆ is valid by the assumption.

Now B is an Sl-form. We will show this. Suppose that B is not an Sl-form. By the assumption,
B has the form ∗j∈Jxj 7→ x′j and s, h |= B. Then we obtain contradiction, since |dom(h)| =
|J | ≤ |FV(∆)| ≤ k < |dom(h)|. Therefore B is an Sl-form.

(1) Suppose that A is not a connected Ls-form. Then the set {0, 1, . . . , n−1}\ I is not empty.
Take the smallest element i0 of this set. We will show contradiction by the case analysis of i0.

We show the case i0 = 0. This case means x = z0 ̸∈ FV(A) since A does not contain z0 7→ z1.
Then 1 = s(z0) ̸∈ dom(h). Recall the above B. It satisfies s, h |= B and contains sl(x, z′) since B
is an Sl-form. Then we have 1 = s(x) ∈ dom(h). Hence we have contradiction.

We show the case i0 > 0. This case we have s, h |= ∗i0−1
j=0 zj 7→ zj+1∗∗j∈I′zj 7→ zj+1∗ls(zn, y),

where I ′ = I \ {0, . . . , i0− 1} and i0 ̸∈ I ′. Hence we have i0+k+1 ≤ |dom(h)|, since {1, . . . , i0}∪
{n+1, . . . , n+k+1} ⊆ dom(h). Now the Sl-form B has the form sl(x, z′m)∗∗j∈Jz

′
j+1 7→ z′j . Thus

there exist h1 and h2 such that h = h1+h2, s, h1 |= sl(x, z′m) and s, h2 |= ∗j∈Jz
′
j+1 7→ z′j . By the

definition of h and i0, we have dom(h1) ⊆ {1, . . . , i0}. Hence we have |dom(h1)| ≤ i0. We also have
|dom(h2)| ≤ |FV(∆)| ≤ k. Therefore we obtain i0 + k + 1 ≤ |dom(h)| = |dom(h1)|+ |dom(h2)| ≤
i0 + k. Contradiction.

Finally we conclude that A is a connected Ls-form. Hence (1) is shown.
(2) Since A is a connected Ls-form by (1), we have I = {0, . . . , n − 1}. Hence we also

have dom(h) = {1, . . . , n + k + 1}. Recall that s, h |= B and B is an Sl-form. We show B
is sl(x, y). Suppose not. Then B has the form sl(x, z′m) ∗ ∗j∈Jz

′
j+1 7→ z′j with J ̸= ∅. Thus

there exist h1 and h2 such that h = h1 + h2, s, h1 |= sl(x, z′m) and s, h2 |= ∗j∈Jz
′
j+1 7→ z′j .

Note that dom(h1) = {1, . . . , s(z′m) − 1} and dom(h2) = {s(z′m), . . . , n + k + 1}. Moreover
s(z′m) < n + k + 2 = s(y) since J is not empty. Hence z′m ∈ −→z by the definition of s and
z′m ̸= y, We have |dom(h1)| = s(z′m) − 1 ≤ n and |dom(h2)| ≤ |FV(∆)| ≤ k. From this, we
obtain n + k + 1 = |dom(h)| = |dom(h1)| + |dom(h2)| ≤ n + k. Contradiction. Therefore
sl(x, y) = B ∈ ∆.

Definition 11 (L-form). A sequent A ⊢ ∆ is called an L-form from x to y if A is an Ls-form
from x to y and ∆ is a semi Sl-form from x to y.

We define ♯ 7→(e) for a sequent e of CSLM
0 IDω in the similar way to one of CSL0IDω.

Lemma 6. Let P be a cut-free cyclic proof in CSLM
0 IDω. Assume that an L-form e from x to

y appears in P as the consequence of an inference rule (r). Then there is a unique premise e′ of
the rule such that e′ is an L-form. Moreover, ♯ 7→(e) < ♯ 7→(e′) if (r) is (UL), and ♯7→(e) = ♯7→(e′)
otherwise.

Proof. This lemma is shown by the case analysis of the rule. Let A and ∆ be the antecedent and
the succedent of e, respectively.

The rule (Id) is not the case since, by lemma 5, A contains the ls-predicate, and ∆ does not
contain the ls-predicate.

The rule (Cut) is not the case since P is cut-free.
The cases of (Wk), (Ctr) and (Subst) are immediately shown.
The case of (UR). By the premise e has the form A ⊢ ∆1, B ∗ sl(x, z), and B ∗ sl(x, z)

is an Sl-form. The unique premise e′ of e has the form A ⊢ ∆1, B ∗ sl(x,w) ∗ w 7→ z. Then
B ∗ sl(x,w) ∗w 7→ z is an Sl-form since B ∗ Sl(x, z) is an Sl-form. Therefore e′ is an L-form. We
also have ♯ 7→(e) = ♯7→(e′).

The case of (UL). By the premise e has the form A1 ∗ ls(z, y) ⊢ ∆, and A1 ∗ ls(z, y) is an
Ls-form. Thus e has a unique premise whose antecedent contains the ls-predicate. Let e′ be the

12



premise. Then e′ has the form A1 ∗ z 7→ z′ ∗ ls(z′, y) ⊢ ∆, where z′ is a fresh variable. We note
that A1 ∗ z 7→ z′ ∗ ls(z′, y) is an Ls-form since A1 ∗ ls(z, y) is an Ls-form and z′ is fresh. Therefore
e′ is an L-form. We also have ♯ 7→(e) < ♯ 7→(e′).

The case of (∗). Recall that e contains only one ls-predicate. Hence there is a unique premise
of e that contains the ls-predicate. Let e′ be the premise. Let A′ and ∆′ be the antecedent and
succedent of e′. Then A′ is an Ls-form. Since ∆ is a semi Sl-form, ∆′ is also a semi Sl-form.
Therefore e′ is an L-form. Note that all 7→ of A must be contained in A′. Otherwise A′ is not a
connected Ls-form. This contradicts Lemma 5. Hence we have ♯ 7→(e) = ♯7→(e′).

Lemma 7. Suppose that there is a cut-free cyclic proof P of ls(x, y) ⊢ sl(x, y) in CSLM
0 IDω.

Then its graph G(P) contains an infinite path (ei)i∈ω such that (a) e0 is ls(x, y) ⊢ sl(x, y), and
(b) each ei is an L-form.

Proof. Let D be the underlying derivation tree of P. We inductively define a finite path
e0, e1, . . . , en of D. Let e0 be ls(x, y) ⊢ sl(x, y) at the root position of D. Suppose that e0, . . . , ek
are already defined. If ek is a bud, then finish making the path with n = k. Otherwise there
exists a unique premise e′ of ek by Lemma 6 such that e′ is an L-form. Then we define ek+1 by e′.
Note that this construction successfully terminates, since any L-form cannot be the conclusion of
(Id) and the number of sequents in D is finite.

We claim that all L-forms of D are on the path, since the premise e′′ of ek (k < n) other than
ek+1 does not contain the ls-predicate and all sequents of the subtree of D starting from e′′ do
not contain the ls-predicate. Hence the companion of the bud en appears in the path (ei)i≤n.

Finally we obtain the required infinite path (ei)i∈ω of G(P) by defining en+1 = ep, where ep is
the companion of en.

Finally we show Theorem 5.

Proof of Theorem 5. Suppose that there is a cut-free cyclic proof P of ls(x, y) ⊢ sl(x, y) in
CSLM

0 IDω. We will show contradiction. By Lemma 7, there is an infinite path (ei)i∈ω of G(P)
such that e0 is ls(x, y) ⊢ sl(x, y) and each ei is an L-form. By the global trace condition, there
exist m ∈ ω and an infinite progressing trace (τi)i≥m that follows the infinite path (ei)i≥m. By
the construction of the path, the bud appears infinitely many times in the path. Let ep and eq
be the first and the second occurrences of the bud in the path. Then there is at least one pro-
gressing point between τp and τq. Hence, we have contradiction since ♯ 7→(ep) < ♯7→(eq) = ♯7→(ep)
by Lemma 6. Therefore there is no cut-free cyclic proof of ls(x, y) ⊢ sl(x, y) in CSLM

0 IDω.

By combining Proposition 4 and Theorem 5, we can obtain our second main result.

Corollary 2. The cyclic proof system CSLM
0 IDω does not enjoy the cut-elimination property.

5 Conclusion and future work

In this paper, we have proved that cut-elimination fails in cyclic proof systems for separation
logic. We have shown the failure by presenting counter-example sequents that can be proven with
cuts but not without cuts. The counter-example sequents are reasonably simple formulas about
singly-linked lists, therefore leading one to believe that some form of cuts is necessary for practical
uses of cyclic proofs in separation logic. Because it is non-trivial to infer arbitrary cut formulas
in general, we envisage automatic provers to include restricted forms of cuts that are suitable for
practical proof searches. For instance, the induction hypothesis synthesis pattern employed in
Chu et al. [8] may be a reasonable approach to this.

As future work, we plan to investigate the power of various strategies used in cyclic-proof-
based provers that can be characterized as restricted forms of cuts. For instance, the approach of
[8] can be seen as a cyclic proof system with cuts restricted to only those against buds. An open

13



question that seems worth investigating is whether all sequents provable in cyclic proof systems
are provable with cuts only against buds.

As another line of future work, we would like to investigate whether the cut-elimination
property can be recovered by restricting the inductive definition usage. Recall that our counter-
examples contain multiple inductive definitions of the same singly-linked list data structure. Per-
haps cut-elimination can be recovered if such a situation is avoided.

Finally, we would like to investigate whether cut-elimination fails or not in cyclic proof systems
for logics different from separation logic, such as first-order logic and bunched implication logic [5,
4]. An important difference between the cyclic proof systems for separation logic in this paper
and those in [5, 4] is the existence of contraction and weakening on antecedents, which precludes
a direct application of the proof technique of this paper.

Acknowledgments We wish to thank James Brotherston for valuable discussions about cyclic
proofs. We also thank the anonymous reviewers of PPL for their helpful comments. This work is
partially supported by JSPS KAKENHI Grant Numbers JP16H05856, JP17H01720, JP18K11161,
JP17H01723, JP18K19787, and by JSPS Core-to-Core Program (A. Advanced Research Net-
works).

References

[1] S. Berardi and M. Tatsuta, Classical System of Martin-Löf’s Inductive definitions is not equivalent to
cyclic proof system, In: Proceedings of FoSSaCS 2017, LNCS 10203 (2017) 301–317.

[2] S. Berardi and M. Tatsuta, Equivalence of inductive definitions and cyclic proofs under arithmetic,
In: Proceedings of 32nd Annual IEEE Symposium on Logic in Computer Science (LICS2017) (2017)
1–12.

[3] J. Brotherston, Sequent calculus proof systems for inductive definitions, Ph.D thesis, Edinburgh Uni-
versity 2006.

[4] J. Brotherston, Formalised Inductive Reasoning in the Logic of Bunched Implications, In: Proceedings
of SAS 2007, LNCS 4634 (2007), 87–103.

[5] J. Brotherstonand A. Simpson, Sequent calculi for induction and infinite descent, Journal of Logic
and Computation 21 (6) (2011) 1177–1216.

[6] J. Brotherston, D. Distefano, and R. L. Petersen, Automated cyclic entailment proofs in separation
logic, In: Proceedings of CADE-23 (2011) 131–146.

[7] J. Brotherston, N. Gorogiannis, and R. L. Petersen, A Generic Cyclic Theorem Prover, In: Proceedings
of APLAS 2012, LNCS 7705 (2012), 350–367.

[8] D. H. Chu, J. Jaffar, and M. T. Trinh, Automatic induction proofs of data-structures in imperative
programs, In: Proceedings of PLDI 2015, 457–466.

[9] A. Das, D. Pous, Non-wellfounded proof theory for (Kleene+action)(algebras+lattices), In proceedings
of CSL 2018, 19:01–19:18.

[10] A. Doumane, On the infinitary proof theory of logics with fixed points, PhD thesis, Paris 7, 2017.

[11] H. H. Nguyen and W. N. Chin, Enhancing Program Verification with Lemmas, In Proceedings of CAV
2008, LNCS 5123 (2008), 355–369.

[12] R. Nollet, A. Saurin, and C. Tasson, Local Validity for Circular Proofs in Linear Logic with Fixed
Points In Proceedings of CSL 2018, LIPIcs 119 (2018), 35:1–23.

[13] J. C. Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures, In: Proceedings of
Seventeenth Annual IEEE Symposium on Logic in Computer Science (LICS2002) (2002) 55–74.

[14] A. Simpson, Cyclic Arithmetic Is Equivalent to Peano Arithmetic, In: Proceedings of FoSSaCS 2017,
LNCS 10203 (2017) 283–300.

14



[15] Q. T. Ta, T. C. Le, S. C. Khoo, and W. N. Chin, Automated Mutual Explicit Induction Proof in
Separation Logic, In: Proceedings of FM 2016, LNCS 9995 (2016) 659–676.

[16] Q. T. Ta, T. C. Le, S. C. Khoo, and W. N. Chin, Automated lemma synthesis in symbolic-heap
separation logic, In: Proceedings of POPL 2018.

15


